首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
山区地方道路测设在技术力量较差,仪器设备供应困难时,中桩工作一般只一个技术干部,二个测工和几名临时工组成。用自制木罗盘代替经纬仪来测角,读数以半度做单位,在缺乏完整和详细的曲线表情况下,我们对于曲线中整桩和加桩的测设多采用以下几种办法:  相似文献   

2.
在公路工程的测量中,关于横断面边桩放样工作,一般在直线上是用十字方向架施测,但在弯道上的加桩(B.c.H.C.E.C.除外)则无方向可对,现在提出利用外距求曲线上加桩横断面的方向,供大家参考。 (1)理论数据用d=θ/L=57.2958/R(以L=R·θ(л/180)代入而得)作得图2。  相似文献   

3.
当前我国正在大力兴修简易公路,普及地方交通。因此,公路测设任务更为繁重。如果在公路路线测量工作中,普遍使用经纬仪来进行量角测量,这在目前无论按术力量的配备上及仪器本身的供应上,都还存在一定的困难。因此,在许多地方,均已先后改装或自制了各种不同形式的“简易量角仪”来代替经纬仪进行量角测量。但是关于使用“简易量角仪”代替经纬仪测角后的精确度问题,曾引起不少人的争论。最近笔者在参加了秦岭山区公路的测量工作中收集了一些资料,拟就使用“简易量角仪”代替经纬仪测角的精确度问题,作一次理论上的分析。  相似文献   

4.
桩体复合地基在软基处理中大量采用,桩体缺陷难以避免,临近设置桩可控制该复合地基水平位移。设计模型试验,研究含缺陷桩复合地基重复加卸载曲线特征与临近嵌岩桩、摩擦桩及其桩顶自由或者通过连梁连接时顶部侧移规律,以指导临近桩的设计。结果表明:(1)含缺陷桩复合地基的加卸载曲线特征与一般地基相似,加载曲线呈上凸形,卸载曲线呈下凹形;(2)随着压力增加,临近桩顶部侧移逐渐增大,增长率随重复加载次数增加而减小。首次加载时,侧移增长经历快速增长、缓慢增长、快速增长3个阶段,第2、3、4次加载时,侧移经历平缓增长、快速增长两个阶段。卸载曲线在最后1~2级荷载处具有拐点,拐点前产生塑性变形,拐点后开始出现弹性变形。桩顶约束条件对回弹变形影响小;(3)相比摩擦桩,嵌岩桩对重复加卸载不敏感,桩顶位移小,说明临近嵌岩桩比摩擦桩的约束效果好。相比桩顶自由单桩,桩顶连梁连接的桩受压产生较大侧移,但对重复加载不敏感,说明桩顶连接连梁的桩整体约束效果好。实际工程中,复合地基内缺陷桩很多时,建议在侧面设置顶部通过连梁连接的嵌岩桩控制含缺陷桩复合地基的水平移动。  相似文献   

5.
张忠桢  骆汉宾  余群舟  盛达 《隧道建设》2017,37(10):1217-1226
为提高地铁盾构隧道施工效率和管片拼装精度,提出用等腰楔形环拼装圆弧形盾构隧道的新的理论与算法。主要结论如下:1)从理论上证明当等腰楔形环依次向相反方向旋转相同角度θ时,隧道轴线在一个平面上,隧道半径R=L/(2sinα/2·cosθ/2),其中L是环宽,α是楔形角;2)提出一种采用容许旋转角拼装楔形环的算法,确定整个盾构隧道上每个衬砌管片环的位置和方位;3)根据楔形环的方位可以确定隧道上的第几环是左转弯环,第几环是右转弯环,使封顶块的位置在隧道上部,从而确定整个盾构线路所需左、右转弯环的数量。  相似文献   

6.
文摘     
《公路》1991,(10)
横向受载桩弹性地基梁计算中影响地基抗力系数的因素〔刊〕/张中和∥东北公路-1991,(1)为查明影响地基抗力系数的因素,本文取桩的承压面积A=r/a·b,利用半无限弹性地基上基础沉陷与A~(1/2)成正比的关系导出两根桩的地基抗力系数k1和k2之比为下式:当材料相同(E1=E2),I值取等于βb~4(β为形状系数)时,上式可代为k_2/k_1=(b_1/b_2)(n+7)/(2n+7)上式只有当n=0(K法)时才能有k_1b_1=k_2b_2=K,我国的规定才与之符合,当k=0.5(c法)或1.O(m法)时k_2/k_1=(b_1/b_2)~(0.9375)或=(b_1/b_2)~(0.889),我国的规定都有误差.同样可见,欧美等国以桩长度上的地基抗力系数为常量而与桩宽b无关的算法也是不准确的.  相似文献   

7.
关于公路工程中平曲线部分之横断面方向的确定,“公路”杂志上曾经介绍了许多方法,兹将笔者工作中采用的一种方法简介如下,供大家参考。 (一)采用之公式: θ=28.6479×L/R式中:?—曲线内任意一点的切线偏角值(单位以度数计); L—曲线长,如图3中之CD(单位以公尺计); R—曲线半径(单位以公尺计)。 (二)按上式可以求出当曲线长为1公尺时(L=1公尺)不同半径的曲线偏角值,见表或图1所示。  相似文献   

8.
在路线测量时,碰到虚交点角桩,都要查三角函数表或对数表来计算甲乙边长。由于查表次数多、手续比较麻繁,所以计算容易出错。现在提出用曲线表计算虚交点角桩的甲乙边长的方法供大家参考。举例: 1.已知:甲乙点的偏角及间距,如图。 2.当半径10公尺时,切线长:乙点切线长6.20( /甲乙点切线之和 12.53公尺甲点切线长 6.33公尺 3.求间距为15.57公尺时的复曲线半径:R_复=15.57×10/12.53=12.41公尺 4.当半径为12.41公尺时,甲乙点的切线长: T_甲=6.33×12.41=7.85公尺 T_乙=6.20×12.41=7.69公尺 5.求УТИ31偏角为128°17′(64°43′ 63°34′)。R_复=12.41公尺时的切线长查R=10公尺偏角128°17′T.=20.63公尺 T=20.63×12.41=25.58公尺  相似文献   

9.
依托XT高速公路K63+500附近引孔加桩加固管桩地基路堤工程,划出一块区域作为试验区,进行了管桩施工时的桩体及桩间土的水平位移测试,并根据桩体水平位移(沿深度)曲线推算得到新加管桩的桩身最大弯矩。结果表明:(1)沉桩挤土效应对桩体和桩间土所产生的水平位移基本一致;(2)由管桩和桩间土内测斜管测得的水平位移沿深度曲线计算出的最小曲率半径接近,其中曲线上段所得的管桩最小曲率半径是桩间土的0.93倍,下段为0.90倍。(3)引孔加桩施工的挤土效应明显,部分新加管桩桩身最大弯矩超过管桩最小开裂弯矩,可能已经出现开裂。  相似文献   

10.
侧向约束桩桩身弯矩问题比较复杂,该文采用室内模型试验研究含桩地基重复加卸载过程中侧向约束桩桩身弯矩特性,结果表明:1含桩地基重复加、卸载过程中,侧向约束桩桩身弯矩沿深度先增大、后减小,有1个峰值(首次加载有2个峰值),峰值出现在0.37倍埋置桩长附近;2桩身弯矩随含桩地基加、卸载而相应增、减。重复加、卸载到相同荷载时,桩身弯矩随加、卸载次数增加而减小;3首次加载达到P-s曲线拐点荷载时,弯矩增长缓慢,第2~4次加载到P-s曲线拐点荷载的前级荷载时,弯矩增长缓慢。说明加载到一定程度时,桩间土作用恒定,桩体作用逐渐发挥,桩体抑制了侧向约束桩弯矩的增长。侧向约束桩弯矩受含桩地基桩间土控制。试验结果为含桩地基侧向约束桩的设计提供了依据。  相似文献   

11.
采用三维有限元数值方法对斜桩单桩在不同方向水平荷载作用下的承载特性进行研究,着重考察水平加载角和桩基倾斜度对其的影响。分析结果表明,斜桩单桩在承受0°~180°不同加载方向的水平荷载作用时,其水平刚度随加载角的增大而不断减小。此外桩基倾斜角越大,上述规律越显著。  相似文献   

12.
在桥梁施工时需要打设钢管桩作为临时支撑体系,待桥梁施工完成后,需要拆除临时支撑体系,这就涉及到了钢管桩的拔桩问题。为了研究钢管桩拔桩时桩、土的力学性能,根据相似比设计了室内拔桩试验,对12根钢管桩分为4组在不同上拔荷载下进行了试验研究。以不同上拔荷载和不同直径、桩长和埋深的待拔桩为变量,讨论了待拔桩的荷载-位移曲线和桩侧土体受力情况以及其发展规律。结果表明:(1)根据不同上拔荷载下拔桩时的荷载-位移曲线变化,拔桩时所需最大上拔力随待拔桩桩径变化明显。桩径每增加20 mm时,DBZ1~DBZ6上拔力增幅在20%~25%之间,DBZ7~DBZ12增幅在20%~30%之间。(2)上拔力与待拔桩埋置深度有关,埋置深度每增加20 cm, DBZ1~DBZ6的最大上拔力增大20%左右,DBZ7~DBZ12增加30%左右。(3)拔桩位移小于8 mm时,土压力增长迅速,而后增长速度有所减缓。待拔桩继续上拔,当桩体位移在12 mm时,桩侧土体发生完全剪切破坏,同时这种破坏形式逐渐向四周传递扩散。(4)桩侧土体受力大小与桩体埋置深度、桩径密切相关。在1倍桩径处的桩侧土压力,桩长每增加20 cm,土压力增幅在35%~145%之间,并随桩长增加明显。在实际拔桩项目中,为了保证待拔桩的顺利拔出,通过试验发现的规律可以为工程实践提供相应参考。  相似文献   

13.
关于用量距法测定平曲线偏角,过去都是用的五尺法,即首先自角点起向直线的延长线与折线方向各量5米。根据我的体会与测算的结果,觉得五尺法可以改进为十尺法即自角点向两线方向各量10米(限于地形者例外)。因为量距定角法系利用正弦函数先求出偏角之半,即:sinθ/2=b/a(如下图,θ即偏角,b即AB之半),因a大于b(斜边大于任一直角边),即函数b/a小于1。故若a为5,则函数尚待相除始得,但若a为10,则函数一量即得。例如b若量  相似文献   

14.
1 引 言 我国公路桥涵地基与基础设计规范和铁路工程技术规范对钻孔桩轴向容许承载力[P]均给出了大体相同的计算公式(简称规范公式)。其形式为: a.对于柱桩 [P]=(C_1A+C_2Uh)R_0 (1) b.对于摩擦桩 [P]=1/2(Ulτ_P+Aσ_R) (2)以上各式中,A——桩底横截面面积;  相似文献   

15.
针对现有《建筑桩基技术规范》(JGJ 94—2008)中设计计算方法难以适用于整体式桥台桥梁桩基的问题,以预应力高强混凝土(Prestress High Concrete,PHC)管桩试验模型为背景,进行了PHC管桩低周往复荷载拟静力试验。通过在桩顶施加水平位移荷载、埋设应变片、土压力计以及特殊设计的桩身水平变位测试方法,得到了PHC管桩桩身破坏特点、沿桩深方向上桩身水平位移与应变、骨架曲线和滞回性能曲线,初步探讨了桩-土相互作用机理,给出了PHC管桩-土相互作用的等效刚度计算方法。试验结果表明:预应力度和配筋率对PHC管桩的破坏模式有较大影响,裂缝分布规律不同,最大弯矩沿桩深方向发展,内力重分布;配筋率和预应力度越小,变形能力(延性)越差、破坏越严重,桩-土相互作用效果不佳;PHC模型桩在加载初期基本表现为线弹性性能,且水平外荷载主要由模型桩承担;当模型桩开裂后拉区混凝土退出工作,荷载增加减缓,表现出较明显的非线性性能,此后水平外荷载的增加主要由桩周土抗力承担;当桩周土压力达到极限时荷载开始下降并迅速破坏;试验全过程各模型桩均表现出了良好的塑性性能和变形能力,延性系数较大,抗震性能较好,可适用于整体式桥台桥梁桩基,研究结果可供有关规范的设计计算参考。  相似文献   

16.
《公路》1960,(9)
内容:在公路横断面测量中,遇到曲线部分时,往往采用普通十字架上加装一块活动木片的求心方向架,由于须在前后两桩各立架一次,使用仍感麻烦。采用求心十字架,仅须在本桩上立架一次即能求出圆心方向,其法如下: 如图,设欲在曲线上A点求  相似文献   

17.
老崔 《驾驶园》2015,(2):88-90
<正>仪表预测法:根据仪表读数异常情况判断故障。水温表:(1)水温表只是比一般情况下高,但没有达到红线,一般情况下,节温器故障或缺冷却液。(2)在红绿灯时,水温上升快,甚至达到红线,行驶时,水温下降达正常位置。一般电子扇可能工作不正常。(3)水温一直偏低,尤其是在冬季,一般为节温器故障。机油指示灯:(1)机油指示灯在发动机工作时出现闪烁或常亮,可能既有需要更换或加添。(2)机油灯怠速时闪烁或常亮,发动机转速升高,机油灯熄灭。一般机油泵工作性能变差或发动机内零件磨损间隙增大。  相似文献   

18.
为了研究地基土以及桩身在进入非线性状态下的单桩水平极限承载能力及变形能力,采用分布塑性铰模型模拟桩身的弹塑性,以p-y曲线模拟桩侧地基土水平抗力,对固定桩头单桩基础进行了静力非线性推倒分析。结果表明:(1)桩身轴压比对结构水平极限承载能力及位移延性影响显著;(2)随着地基土抗剪强度的增大,桩顶极限位移减小,但水平极限承载能力增大;(3)提高桩身配箍率,桩顶极限位移增加较明显;(4)轴压比较小时,在桩头及地面以下桩身均可能产生塑性铰,但轴压比较大时,仅在桩头产生塑性铰。  相似文献   

19.
《公路》1958,(10)
在地方道路的测量工作中,由于缺乏仪器,所以采用量距法来测定偏角是有现实意义的。在“怎样测量简易公路”(人民交通出版社出版)一书中,系采用自交点桩沿两切线各量5公尺得出甲乙长度b(原文为A),查出偏角(如图1)。偏角与甲乙长度b是余弦关系: Cosα=0.5b/5=0.1b Cosθ=2Cosα笔者建议利用正弦关系来求偏角,这样更可以比较正确地量出控制的长度(如图2)。自切线方向量5公尺得甲点;由甲点通过交点再延长5公尺,得丙点。自交点沿切线方向量5公尺得乙点。实量乙丙间长度为a  相似文献   

20.
在公路测量中,计算工作是非常重要的。乍看去似乎是简单的加加减减,没有奥妙的计算,其实这项工作是在测量中最易出差错的。在测量山区公路时,由于地形复杂,弯道往往多得一个接连一个,计算工作感到十分繁忙,发生差错的现象也就会越多。为杜绝差错,及时校错为正,现将自己在测量中的一点体会介绍一下。我们知道:在相同半径曲线内,切线长和曲线长是随折角大小成正比关系的,为此,中线交点桩的里程亦恒大于平面曲线中点桩的里程(如下图)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号