首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该文以钢纤维体积掺量、配筋率为基本参数,进行了12根钢筋超高性能混凝土(Ultra-High Performance Concrete,UHPC)试验梁和2根普通钢筋混凝土(RC)试验梁的受弯性能试验研究。试验结果表明:UHPC试验梁的开裂、屈服和破坏荷载以及结构刚度均比RC试验梁大,UHPC试验梁的屈服和破坏荷载、延性和抗裂性均随着钢纤维掺量和配筋率的增加而提高。有限元模型参数分析结果表明:配筋率对UHPC试验梁屈服荷载与破坏荷载影响较大,而钢纤维掺量对开裂荷载影响较大;钢筋屈服强度可有效提高UHPC试验梁的延性;UHPC受拉强度的增加对开裂荷载的提高比屈服荷载和破坏荷载明显。最后,提出正截面抗弯开裂弯矩与极限承载力的计算公式,为UHPC桥梁设计规范的制定提供参考。  相似文献   

2.
对3根不同配筋形式(普通钢筋配筋方案、钢板配筋方案、预应力筋配筋方案)的UHPC梁进行了受弯性能试验,结果表明:①相同配筋率条件下,钢板配筋方案(TB-2)较普通钢筋配筋方案(TB-1)更有利于限制裂缝的扩展,但对初裂荷载影响不大;②预应力筋配筋方案梁(TB-3)普通钢筋配筋率低,梁体开裂过后,裂缝迅速扩展,达到极限荷载时的最大裂缝远大于钢板配筋方案(TB-2)和普通钢筋配筋方案(TB-1);③建立了考虑受拉区UHPC抗拉贡献的抗弯承载能力计算公式,计算值与试验值吻合良好,为超高性能混凝土结构设计提供参考。  相似文献   

3.
提出了一种超高性能混凝土-普通混凝土(UHPC-NC)组合结构,以解决传统中小跨径桥梁的不足。①为了研究所提出的UHPC-NC组合梁抗弯性能,设计了一根1∶2的缩尺模型,并进行了试验研究和有限元分析,结果表明试验模型的名义初裂应力为23. 4 MPa,承载能力极限状态的名义应力为62. 9 MPa,能够满足工程正常使用极限状态和承载能力极限状态下的抗弯承载力要求。②建立了试验梁的ABAQUS有限元模型,计算结果与试验结果吻合较好,表明所建立的有限元模型具有一定的准确性和适用性。③通过有限元模型分析了纵向主筋配筋率、UHPC抗拉、压强度及现浇桥面板强度等级对组合梁抗弯性能的影响。结果表明提高主梁配筋率、UHPC抗拉强度能够显著提高组合梁的极限承载能力,而UHPC抗压强度和现浇桥面板的强度等级对组合梁的极限承载能力影响不大。  相似文献   

4.
为研究高强钢筋活性粉末混凝土(RPC)梁在弯矩作用下的受力特性和其抗弯性能的影响因素,设计制作20根高强钢筋RPC矩形梁进行抗弯承载力试验,分析梁的破坏形态、荷载~挠度曲线、裂缝的发展和分布,研究配筋率和钢筋强度对抗弯性能的影响规律。结果表明:RPC适筋梁的正截面破坏过程与普通混凝土梁相似,表现出良好的延性,少筋梁和无筋梁具有一定的延性;相同钢筋强度RPC梁的开裂弯矩和极限承载力随配筋率增加而增大;相同配筋率时,RPC梁的极限承载力随钢筋强度增加而增大,但钢筋强度对开裂弯矩影响不大;试验过程中,梁的截面应变符合平截面假定;根据简化理论计算的RPC梁极限弯矩值和试验值吻合良好。  相似文献   

5.
为研究UHPC梁的斜截面抗裂性能并提出合理的评价指标和设计建议,以期能充分利用UHPC超高的抗拉性能及优秀的裂缝控制能力,设计了5片预应力UHPC-T形梁,并完成其静力加载模型试验,试验参数为剪跨比、箍筋和钢纤维含量,获得了开裂荷载、裂缝分布和应变等关键试验结果。试验结果表明:当剪跨比增加时,开裂荷载会减小,斜裂缝宽度的发展速度却加快;箍筋对开裂荷载影响较小,但能抑制斜裂缝的发展;钢纤维含量的增加会提高开裂荷载和减缓斜裂缝的发展速度。根据材料力学公式推导出斜截面开裂剪力计算公式,进一步采用极限平衡法建立正常使用阶段斜裂缝宽度的计算方法,计算值与试验值吻合良好且偏于安全。通过计算实测开裂剪力作用下斜截面的主拉应力可知:开裂时斜截面的主拉应力会超过UHPC的抗拉强度,不仅体现了UHPC的应变硬化特性,还反映了UHPC梁良好的斜截面抗裂性能。对比各国规范的斜截面抗裂设计规定,中国规范建议稿的容许应力值较为保守。基于开裂时的主拉应力水平和各国规范规定,建议放宽整体预应力UHPC梁的主拉应力限值,取为60%的弹性极限抗拉强度并考虑纤维分布的不均匀性。对于允许开裂的UHPC梁,应验算正常使用阶段的...  相似文献   

6.
提出了一种利用预应力钢丝绳和超高性能混凝土(UHPC)复合抗弯加固损伤钢筋混凝土梁(RC梁)的新方法,制作了1根普通混凝土基准梁(CB)和2根相同的预应力钢丝绳-UHPC加固梁(SB1,SB2),通过四点弯曲试验,探究了加固梁的破坏模式、变形性能、抗裂性能、应变发展与界面滑移特点。试验结果表明加固梁的破坏模式为钢丝绳和UHPC断裂,普通钢筋屈服,之后顶部混凝土压溃的受弯破坏;加固层断裂失效后加固梁与基准梁的抗弯性能基本相同。该加固方法可有效提高构件的抗弯刚度和开裂荷载,延缓原梁裂缝和应变发展,从而使构件在正常使用阶段的受力性能得到了明显提升。  相似文献   

7.
为探究钢-UHPC组合结构与普通钢-混组合结构中PBL剪力键力学性能的差异性,通过推出试验和有限元分析相结合的方法对其展开详细研究。首先,对9个UHPC试件和9个普通混凝土试件进行推出试验,根据2种混凝土试件中PBL剪力键的破坏形态、荷载-滑移曲线及应变分布规律揭示其失效机制及力学性能的差异,分析贯穿钢筋直径和钢板开孔数对PBL剪力键力学性能的影响;然后,采用试验结果验证的有限元模型开展参数分析,详细探讨UHPC强度、钢板开孔孔径、贯穿钢筋屈服强度和钢板厚度对PBL剪力键极限抗剪承载力的影响;最后,基于试验和有限元分析结果,提出考虑钢纤维的PBL剪力键极限抗剪承载力计算公式。结果表明:受钢纤维的影响,UHPC的裂缝发展受到限制,且较普通混凝土裂缝数量少、宽度小;UHPC试件中贯穿钢筋发生明显屈服,以剪切破坏为主;单孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径,而受混凝土强度影响较小;多孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径和混凝土强度;与普通混凝土试件相比,UHPC试件的抗剪刚度提升了2~3倍,双孔剪力键极限抗剪承载力约提高41%,三孔约提高56%;钢板开孔孔径、...  相似文献   

8.
传统的钢筋混凝土结构在车辆荷载、恶劣环境下可能发生早期开裂破坏。为研究超高性能纤维钢筋混凝土(UHPFRC)对现有混凝土结构的修复潜力。文中提出在钢筋混凝土结构受拉区的2种加固方案,分别为UHPFRC加固构造(UR结构)和UHPFRC+内嵌纵向钢筋加固构造(URR结构),同时与未加固的混凝土梁(RC)和模型梁试验结果进行对比分析;并进一步研究UHPFRC厚度与UHPFRC层配筋率等参数对极限承载力、刚度及开裂荷载的影响。结果表明,随着UHPFRC层厚度的增加,复合结构的抗裂强度和刚度显著提升1~2倍,但抗弯承载力改善不明显。当钢筋嵌入UHPFRC层时,抗裂强度和极限承载力均得到显著提升,延迟了结构的开裂。  相似文献   

9.
通过从实桥构件和电化学快速锈蚀构件中获得361根锈蚀钢筋样本,基于锈蚀钢筋拉伸试验,分别建立了HPB235和HRB335两种类型钢筋的质量锈蚀率、截面锈蚀率与屈服荷载、极限抗拉荷载、屈服强度及极限抗拉强度间的关系,对比了锈蚀率对不同类型钢筋屈服强度、极限抗拉强度、屈服荷载和极限抗拉荷载的影响;回归了快速锈蚀与自然锈蚀两种环境下钢筋质量锈蚀率与屈服荷载和极限抗拉荷载的关系,分析了两种环境对锈蚀钢筋力学性能影响的差异。研究表明:锈蚀对极限荷载、极限强度的影响分别大于屈服荷载、屈服强度;锈蚀对HRB335钢筋的影响比对HPB235钢筋的大;快速锈蚀条件下钢筋屈服荷载和极限荷载下降速度较自然锈蚀条件的快。  相似文献   

10.
为了研究预制UHPC螺栓连接键齿接缝梁的抗弯性能,进行了3根UHPC螺栓连接键齿接缝梁(简称接缝梁)和1根UHPC整体梁的抗弯试验,探讨接缝两侧设置钢垫板及接缝表面涂抹环氧树脂胶等因素对UHPC接缝梁的开裂荷载、抗弯承载力、跨中挠度、连接钢板上、下缘应变、接缝相对纵向位移的影响。试验及分析结果表明:UHPC接缝梁存在有一种受弯破坏模式,该破坏模式表现为UHPC键齿受剪产生楔形裂缝而引起的接缝破坏,接缝表面涂抹环氧树脂胶对接缝梁的抗弯及变形性能影响小,接缝两侧设置钢垫板对UHPC接缝梁的开裂荷载影响小,但可提高接缝的抗弯承载力,减小接缝梁的跨中挠度和接缝的上、下缘相对纵向位移,且对连接钢板的受弯变形也有一定的改善作用。  相似文献   

11.
为研究空心板桥新型粗骨料超高性能混凝土(UHPC)铰缝的抗剪性能,对14个铰缝试件进行了静力抗剪试验,试验参数包括铰缝混凝土材料类型、界面处理方式、抗剪钢筋构造形式、抗剪钢筋强度等级和配筋率。分析了试件的裂缝发展过程和分布规律、破坏模式以及各试验参数对铰缝抗剪性能的影响;同时,基于铰缝典型的荷载-位移曲线分析了铰缝的抗剪机理。试验结果表明:铰缝的裂缝宽度从下至上呈现逐渐减小的规律,由于传统配筋方式上部抗剪钢筋的位置靠近顶部,导致上部抗剪钢筋在铰缝抗剪承载力极限状态时尚未屈服,对抗剪承载力的贡献小。试件破坏模式分为2种:传统铰缝的界面剪切破坏;UHPC铰缝的预制混凝土块剪切破坏。UHPC材料、界面预留槽处理方式、抗剪钢筋新配筋方式以及提高抗剪钢筋的强度等级和配筋率,均能不同程度地提升铰缝的抗剪性能。与传统铰缝相比,新型粗骨料UHPC铰缝的开裂荷载、抗剪承载力和名义抗剪刚度提升幅度分别可达42.8%、185%和218.3%。当达到抗剪承载力极限状态时,UHPC铰缝主要依靠抗剪钢筋屈服提供的剪切摩擦抗力以及预制混凝土块剪断提供的剪切抗力来抵抗外荷载。提出了UHPC铰缝开裂荷载及抗剪承载力计算公式。计算结果表明:开裂荷载、抗剪承载力试验值与计算值比值的均值分别为1.47、1.19,变异系数分别为0.05、0.12,所提出的计算公式可以较精确和稳定地预测UHPC铰缝的开裂荷载及抗剪承载力。  相似文献   

12.
为了克服传统预应力混凝土主梁、钢主梁、钢-混凝土组合主梁由于材料和结构本身缺陷所引起的病害,提出了适用于(特)大跨径桥梁且无横向表面受拉接缝的钢-UHPC(Ultra-high Performance Concrete)轻型组合桥梁结构。为验证轻型组合梁用于斜拉桥的可行性,建立了空间有限元模型进行静力性能分析和疲劳应力幅计算,并制作了9个足尺条带模型试验梁,开展了静载试验研究。研究结果表明:受拉钢筋配筋率、钢筋直径、直线型纤维直径和长度对UHPC的初裂应力影响不大,而纤维带端钩能显著提高初裂应力;端钩型、直线型纤维UHPC试验梁正弯矩初裂应力分别为19.4,10.6 MPa,前者高出后者83%,负弯矩初裂应力分别为13.8,8.4 MPa,前者高出后者64%;正常使用极限状态时,端钩纤维试验梁正负弯矩初裂应力分别为华夫板下缘、上缘频遇组合拉应力的1.45倍、1.66倍;承载能力极限状态时,端钩纤维试验梁正负弯矩名义拉应力试验值分别为华夫板下缘、上缘基本组合名义拉应力的2.1倍、2.4倍;基于S-N曲线预测UHPC华夫桥面板疲劳寿命远大于200万次。  相似文献   

13.
利用ANSYS有限元软件模拟加固梁,考虑砼材料的非线性行为,利用生死单元实现不同损伤下的碳纤维增强复合材料(CFRP)加固作用,通过Combin39单元模拟CFRP板与砼之间的胶层,研究不同参数下加固梁模型开裂、屈服、极限荷载值及跨中挠度,分析RC梁损伤程度、砼强度、粘结长度、槽边距离对加固梁抗弯性能的影响。结果表明,在钢筋屈服之前CFRP加固梁的刚度几乎不受这4个参数的影响,但在钢筋屈服之后CFRP加固梁的刚度随着粘结长度及砼强度的增加而增大,随着损伤程度的增加而降低,满足最小槽边距时对加固梁的刚度影响不大;损伤程度从预加极限荷载值的0提高到70%,加固梁的极限荷载值降低19.7%;CFRP板粘结长度增加38%,加固梁的极限荷载值提高23.7%;砼强度从C30提高到C50,极限荷载值提高28.1%;槽边距从20mm增加至40mm,极限荷载值提高16.9%。  相似文献   

14.
为研究普通钢筋混凝土梁不同受力区域加固超高性能混凝土(UHPC)后抗弯承载力的变化情况,设计、制作了3根试验梁[未加固钢筋混凝土梁(RC)、受压区UHPC加固梁(UC)和受拉区UHPC加固梁(UT)],采用四点加载法进行抗弯试验,分析加固前后试验梁的破坏模式、荷载-挠度曲线及承载力变化规律。结果表明:试验梁UC和UT相较于RC,刚度和承载力大幅提高,其中承载力分别提高61.2%和96.9%;提出了钢筋混凝土梁受压区、受拉区(考虑纤维贡献)加固UHPC后的抗弯承载力简化计算公式,计算值和试验值误差小于5%,具有较高的计算精度和适用性。  相似文献   

15.
杜斌  于可 《中南公路工程》2008,33(1):110-113
桥梁结构自重较大,一般均采用带载加固.当在梁的受拉区直接粘贴钢板或粘贴其他纤维复合材料对桥梁进行加固时,一期恒载(构件自重与恒载)由原梁承担,二期荷载(活载)由加固后的组合截面承担,后加补强材料的强度发挥程度受原梁变形的限制,应考虑分阶段受力特点.通过理论分析,分别考虑以原梁混凝土极限压应变和原梁受拉钢筋极限拉应变控制的加固设计方法,得出了直接粘贴钢板或粘贴其他高强纤维复合材料加固桥梁的正截面抗弯承载力的计算公式.  相似文献   

16.
通过钢筋的中心拔出试验,分析钢筋直径、相对锚固长度及超高性能混凝土(UHPC)材料对钢筋与UHPC间粘结性能的影响,得出各参数对试件粘结锚固性能的影响规律,并对钢筋在UHPC中的锚固长度提出设计建议。试验结果表明:钢纤维的存在大大提高UHPC的抗拉性能和整体性,其不会发生劈裂破坏;UHPC材料对粘结锚固强度影响不大;粘结锚固强度随着钢筋直径的增大而减小;大于25mm钢筋直径,在设计锚固长度时,应考虑颈缩效应的影响。  相似文献   

17.
通过对2片钢筋混凝土梁、6片用碳纤维布加固的钢筋混凝土梁的模型试验研究,分析试验梁在循环荷载作用下梁体顶面应变、受拉区钢筋应变、碳纤维布的受力特点、跨中截面抗弯刚度、梁体裂缝等.研究结果表明,钢筋混凝土梁用碳纤维布加固后,在经过200万次循环荷载作用后,其强度与抗弯承载能力明显提高,且随粘贴层数的增加,其承载能力提高的幅度也增大.由此可知,碳纤维布与混凝土的共同工作性能良好,满足抗疲劳要求.  相似文献   

18.
针对配筋超高性能混凝土(UHPC)构件的抗扭性能研究严重不足的状况,进行10个不同配筋率UHPC矩形梁的纯扭试验。研究参数主要包括钢纤维掺量、纵筋配筋率和箍筋配筋率。观察或测试试件的扭转破坏过程及形态,获得裂缝开展及分布情况、失效模式、扭矩-扭率曲线、扭矩-UHPC应变曲线、扭矩-钢筋应变曲线、开裂扭矩及极限扭矩等数据,分析不同参数对其扭转性能的影响规律及其主要机理。研究结果表明:扭矩不大于无筋UHPC试件极限扭矩时,配筋构件抗扭刚度小于无筋构件;配筋及无筋试件的纯扭破坏均表现为多条主裂缝贯通,且裂缝呈空间螺旋状分布;无配筋试件形成少量斜裂缝,极限扭率较小,破坏过程迅速;配筋试件形成细且密的斜裂缝、极限扭率较大、延性更好;根据实测的极限扭矩扭率增幅情况,以及纵、箍筋屈服情况,受扭的UHPC配筋试件可分为少筋Ⅰ类构件(含无筋构件)、少筋Ⅱ类构件、适筋构件、部分超筋构件、超筋构件;钢纤维改善了UHPC抗拉特征,使得主裂缝开裂角度(裂缝与试件轴线的夹角)增加;钢纤维掺量由2.5%增加到3.5%,试件开裂扭矩和极限扭矩分别提高了23.2%和20.9%。在试验的基础上,根据扭转试件即将开裂时实测的拉压应力状态以及二维应力状态下的强度准则,得到UHPC构件开裂扭矩系数值;最后,根据试验结果得到了UHPC极限扭矩计算公式的截面抗扭系数。  相似文献   

19.
为了改善装配式UHPC(超高性能混凝土)桥梁接缝处由于钢纤维不连续易开裂受损的问题,提出UHPC湿接缝方案并进行优化及受力性能研究。完成了6个试验模型,即直接缝、菱形接缝、上下条带接缝、未焊接及焊接的上下条带菱形接缝5种UHPC接缝梁及UHPC完整梁。对模型的受弯裂缝破坏形式、试验梁的荷载-位移曲线、极限抗弯承载能力、搭接钢筋是否焊接的影响等方面开展相关研究。研究表明:接缝梁的受弯性能均低于完整梁,接缝梁中,焊接的上下条带菱形接缝梁的刚度最高,抗裂缝发展性能最强,综合受弯性能最优,其次是未焊接上下条带菱形接缝梁、上下条带接缝梁、菱形接缝梁和直接缝梁。  相似文献   

20.
为明确超高性能混凝土(Ultra-high Performance Concrete,UHPC)双向板在局部荷载作用下的抗冲切性能,以UHPC强度、板厚、配筋率、局部加载面积和加载位置为试验参数,对9块四边简支UHPC双向板进行抗冲切破坏试验,分析UHPC双向板的冲切破坏机理和各试验参数对板抗冲切性能的影响规律。结果表明:试件均发生钢筋屈服后的冲切破坏,板底出现环形裂缝且板内形成冲切锥体;冲跨比小于7时,冲切破坏面倾角和名义抗冲切强度均随冲跨比增加而减小,而冲跨比大于7时,则其基本不变;UHPC强度等级从120 MPa提高到150 MPa时,板的抗冲切承载能力提高5.5%;当板厚由60 mm增加至80 mm和100 mm时,板的抗冲切承载能力分别提高69.7%和1.883倍;相较于1.31%配筋率的试件,2.57%配筋率的试件的抗冲切承载能力提高14.9%;与方形加载板边长为70 mm的试件相比,边长为90 mm试件的抗冲切承载能力提高9.8%;与中部加载试件相比,边部和角部加载试件的抗冲切承载能力分别提高15.3%和13.1%。为避免UHPC双向板发生钢筋网格内的冲切失效,板底受拉钢筋间距不应大于加载板边长与1.15倍有效板厚的和。基于试验结果和相关文献,评估了现有抗冲切承载力计算公式的适用性,并引入冲跨比考虑局部荷载偏置的影响,提出了适用范围更宽的UHPC板抗冲切承载能力计算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号