首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Interest at the political level in congestion charging is gaining pace as cities struggle with ways to reduce the effects of growing traffic congestion on the liveability of cities. Despite a long history of promotion of a wide array of travel demand management (TDM) initiatives, very few have had a noticeable impact on the levels of traffic on the road networks of metropolitan areas. TDM success in this context has almost become ‘band-aid’ in the absence of a pricing strategy that not only promotes efficient use of the system but also hypothecates revenues to support essential complementary infrastructure and services such as public transport. This paper takes a look at the stream of pricing consciousness that is surfacing around the world. Although very few jurisdictions have implemented congestion charging, or any form of efficient variable car and truck user charging, the winds of change are well in place. The adage “it is not a matter of if but of when” seems to be the prevailing view. Our overview of global trends in positioning the debate and hopefully follow-through commitment to implementation provides a backdrop to papers submitted for this special issue on travel demand management. The predominance of papers on pricing is indicative of the priority that must be given to efficient charging and revenue disbursement.  相似文献   

2.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue.  相似文献   

3.
The call for a congestion charge is getting louder and more frequent in many countries as major metropolitan areas experience increasing levels of road congestion. This is often accompanied by a recognition that governments need to find new sources of revenue to maintain existing road networks and to invest in new transport infrastructure. Although reform of road pricing is almost certain to occur at some time in the future in a number of countries, a key challenge is in selling the idea to the community of road users as well as a whole raft of interest groups that influence the views of society and politicians. Simply announcing a need for a congestion charge (often misleadingly called a tax) does little to progress the reform agenda. What is required is a carefully structured demonstration of what might be done to progressively introduce adjustments in road user charges that are seen as reducing the costs to motorists while ensuring no loss of revenue to government. In this paper we show, in the context of Sydney (Australia), that this can be achieved by the reform of registration fees in the presence of a distance-based charging regime that can deliver financial gains to motorists, with prospects of revenue growth to the State Treasury.  相似文献   

4.
Based on previous studies of a highway reservation system, this paper proposed an auction-based implementation, in which the users can bid for the right to use a route during a certain period of time. This paper models the auction system with MATSim using an agent-based simulation technique. The agents adopt their own bidding logic in the auction, and the price converges after around 130 iterations, when the number of users using the reserved highway and the total collected revenue become stable. When the overall demand changes, the collected revenue ranges from 5 to 11 dollars per user, and from 0.7 to 1.5 dollars per mile. The auction system can transfer more consumer surplus to the toll road operators, since it is a personalized tolling mechanism. The users are using the reservation system as insurance of a guaranteed congestion-free travel. The auction-based highway reservation shows great potential as a new traffic management system.  相似文献   

5.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

6.
Electric transit buses have been recognized as an important alternative to diesel buses with many environmental benefits. Electric buses employing lithium titanate batteries can provide uninterrupted transit service thanks to their ability of fast charging. However, fast charging may result in high demand charges which will increase the fuel costs thereby limiting the electric bus market penetration. In this paper, we simulated daily charging patterns and demand charges of a fleet of electric buses in Tallahassee, Florida and identified an optimal charging strategy to minimize demand charges. It was found that by using a charging threshold of 60–64%, a $160,848 total saving in electricity cost can be achieved for a five electric bus fleet, comparing to a charging threshold of 0–28%. In addition, the impact of fleet sizes on the fuel cost was investigated. Fleets of 4 and 12 buses will achieve the lowest cost per mile driven when one fast charger is installed.  相似文献   

7.
The Government of the Territory of Hong Kong is the first in the world to propose a system of charging motorists directly for the use of congested roads. Hong Kong has more registered motor vehicles per unit length of road than any other country and the road system is physically separate from China. Despite the scheme's technical proficiency and ability to earn revenue well in excess of operating costs, there is doubt about equity and efficiency. In the end, traffic conditions were not seen to be sufficiently bad so the scheme's introduction has been postponed.  相似文献   

8.
This paper presents a general framework to estimate the bus user time benefits of a median busway including the effects on travel time and access time. Unlike previous models, we take into account the effects of geometry and the interaction with the demand structure. Models for predicting the bus in-vehicle time benefits of a median dual carriageway busway against mixed traffic condition on 2 and 3 lanes roads are estimated using data from a case study in Santiago (Chile), using a bus travel time model empirically estimated and considering different base case situations, including mixed traffic operations and bus lanes. Results of the application show that the expected in-vehicle time savings of a median busway might be reduced by access time losses due to increased walking distances and road crossing delays. Also, that net time benefits can vary significantly according to the base situation and the structure of demand considered. These findings point out to the need of including a wider set of impacts when studying the benefits of median busways, beyond in-vehicle time savings only. The empirical work presented here is completely based on passive data coming from GPS and smartcards, what makes easier and cheaper to conduct this type of analysis as well as to do it with a comprehensive scope at an early stage of the development of a BRT project. This framework can be extended to other types of dedicated bus lanes provided that a corresponding bus travel time savings model is available.  相似文献   

9.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a new methodology to determine fleet size and structure for those airlines operating on hub‐and‐spoke networks. The methodology highlights the impact of stochastic traffic network flow effects on fleet planning process and is employed to construct an enhanced revenue model by incorporating the expected revenue optimization model into fleet planning process. The objective of the model is to find a feasible allocation of aircraft fleet types to route legs using minimum fleet purchasing cost, thus ensuring that the expected fleet profit is maximized subject to several critical resource constraints. By using a linear approximation to the total network revenue function, the fleet planning model with enhanced revenue modeling is decomposed into the nonlinear aspects of expected revenue optimization and the linear aspects of determining fleet size and structure by optimal allocation of aircraft fleet types to route legs. To illustrate this methodology and its economic benefits, an example consisting of 6 chosen aircraft fleet types, 12 route legs, and 57 path‐specific origin‐destination markets is presented and compared with the results found using revenue prorated fleet planning formulation. The results show that the fleet size and structure of the methodology proposed in this paper gain 211.4% improvement in fleet profit over the use of the revenue prorated fleet planning approach. In addition, comparison with the deterministic model reveals that the fleet size and structure of this proposed methodology are more adaptable to the fluctuations of passenger demands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The classical road-tolling problem is to toll network links such that under the principles of Wardropian User Equilibrium Assignment a System Optimising (SO) flow pattern is obtained. Stochastic assignment methods are accepted to be more realistic than deterministic and it is of interest to examine the potential for optimal tolling in the case of Stochastic User Equilibrium (SUE). In examining the case of Stochastic User Equilibrium the ‘desired flow pattern’ to be created must first be determined. The classical economics solution of replacing unit-cost flow functions with marginal-cost flow functions which under deterministic assignment produces the System Optimal solution (where Total Network Travel Cost (TNTC) is minimised) does not generally result in TNTC being minimised in the Stochastic Case. Instead such tolls produce a ‘Stochastic System Optimal’ (SSO) solution where the Total Perceived Network Travel Cost (TPNTC) is minimised.This paper examines and compares link-based tolling solutions to achieve both the SSO (TPNTC minimised) and true SO (TNTC minimised) under SUE and illustrates the concept with numerical examples. Such link-based tolling schemes produce network benefit by re-routing rather than traffic suppression as opposed to the cordon-based charging schemes which have been implemented in practice. Equity issues relating to charging schemes are discussed and the desirability of zero-toll routes is highlighted associated with greater potential political acceptability of charging schemes that do not impose excessive charges upon users (such as minimal or low revenue tolls). A heuristic is developed to toll network links in such a way as to balance the number of links tolled against the revenue required to produce a desired reduction in TNTC such that optimal network flow patterns are approached.  相似文献   

12.
Income inequity potentially exists under high occupancy toll (HOT) lanes whereby higher-income travelers may reap the benefits of the facility. An income-based multi-toll pricing approach is proposed for a single HOT lane facility in a network to maximize simultaneously the toll revenue and address the income equity concern, while ensuring a minimum level-of-service on the HOT lanes and that the toll prices do not exceed pre-specified thresholds. The problem is modeled as a bi-level optimization formulation. The upper level model maximizes revenue for the tolling authority subject to pre-specified upper bounds on tolls. The lower level model solves the stochastic user equilibrium problem. An agent-based solution approach is used to determine the toll prices by considering the tolling authority and commuters as agents. Results from numerical experiments indicate that a multi-toll pricing scheme is more equitable and can yield higher revenues compared to a single toll price scheme across travelers.  相似文献   

13.
This paper compares performances of cordon- and area-road pricing regimes on their social welfare benefit and equity impact. The key difference between the two systems is that the cordon charges travellers per crossing whereas the area scheme charges the travellers for an entry permit (e.g. per day). For the area licensing scheme, travellers may decide to pay or not to pay the toll depending on the proportion between their travel costs for the whole trip-chains during a valid period of the area license and the toll level. A static trip-chain equilibrium based model is adopted in the paper to provide a better evaluation of the area-based tolls on trip-chain demands. The paper proposes a modified Gini coefficient taking in account assumptions of revenue re-distribution to measure the spatial equity impact. The model is tested with the case study of the Utsunomiya city in Japan. The results demonstrate a higher level of optimal tolls and social welfare benefits of the area-based schemes compared to those of the cordon-based schemes. Different sizes of the charging boundary have significant influences on the scheme benefits. The tests also show an interesting result on the non-effect of the boundary design (for both charging types) on their equity impacts. However, when comparing between charging regimes it is clear that the area schemes generate more inequitable results.  相似文献   

14.
The Stockholm congestion charging trial in 2006 demonstrated the effects of a full-scale time-differentiated urban road toll scheme. Improvements in travel times were large enough to be perceived by the general public. This was pivotal to the radical change of public attitudes that occurred during the trial and that resulted in a positive outcome of a subsequent referendum on a proposal for making the system permanent. This paper summarises the effects of the trial and analyses to what extent targets were met. Effects on congestion reduction were larger than anticipated, which also resulted in favourable economic and environmental effects. The trial showed that a single-cordon toll could affect traffic within a large area, i.e., not just close to the zone limits.  相似文献   

15.
This paper presents a cost–benefit analysis of the Stockholm congestion charging system, based on the observed rather than on the model-forecasted data. The most important data sources are travel time and traffic flow measurements made in the year before the charges were introduced (during April 2005) and during the first spring with the charges (during April 2006, 4 months after the charges were introduced). Using matrix calibration, effects on the non-observed link flows and travel times are extrapolated, enabling us to calculate the social value of changes in travel times and travel costs. Impacts on traffic safety and emissions are calculated using standard Swedish CBA relationships. The system is shown to yield a significant social surplus, well enough to cover both investment and operating costs, provided that it is kept for a reasonable lifetime: investment and startup costs are “recovered” in terms of social benefits in around 4 years.  相似文献   

16.
Congestion charging is being considered as a potential measure to address the issue of substantially increased traffic congestion and vehicle emissions in Beijing. This study assessed the impact of congestion charging on traffic and emissions in Beijing using macroscopic traffic simulation and vehicle emissions calculation. Multiple testing scenarios were developed with assumptions in different charging zone sizes, public transit service levels and charging methods. Our analysis results showed that congestion charging in Beijing may increase public transit use by approximately 13%, potentially reduce CO and HC emissions by 60–70%, and reduce NOx emissions by 35–45% within the charging zone. However, congestion charging may also result in increased travel activities and emissions outside of the charging zone and a slight increase in emissions for the entire urban area. The size of charging zone, charging method, and charging rate are key factors that directly influence the impact of congestion charging; improved public transit service needs to be considered as a complementary approach with congestion charging. This study is used by Beijing Transportation Environment and Energy Center (BTEC) as reference to support the development of Beijing’s congestion charging policy and regulation.  相似文献   

17.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   

18.
Road user charging design: dealing with multi-objectives and constraints   总被引:1,自引:0,他引:1  
This paper proposes an innovative approach for designing a road user charging scheme to meet multiple policy objectives. Three practical features are integrated into the design methodology including (i) cordon formation, (ii) a set of design constraints, and (iii) multiple objectives of the scheme. The methods also consider possible responses of road travellers to the charging scheme. Two methods based on genetic algorithms (GA) are developed for optimising a charging cordon scheme with constraints and with multiple objectives. The dynamic self-adaptive penalty GA and Non-dominated Sorting GA II (NSGA-II) are applied to the constrained design and multi-objective design respectively. The objective functions or constraints considered include social welfare improvement, revenue generation, and distributional equity impact. A case study of the City of Edinburgh is presented and common characteristics of charging cordon designs which perform well against the three objectives are discussed.
Agachai SumaleeEmail:
  相似文献   

19.
Shared autonomous vehicles (SAVs) are the next major evolution in urban mobility. This technology has attracted much interest of car manufacturers aiming at playing a role as transportation network companies (TNCs) and carsharing agencies in order to gain benefits per kilometer and per ride. It is predicted that the majority of future SAVs would most probably be electric. It is therefore important to understand how limited vehicle range and the configuration of charging infrastructure will affect the performance of shared autonomous electric vehicle (SAEV) services. In this study, we aim to explore the impacts of charging station placement, charging types (including normal and rapid charging, and battery swapping), and vehicle battery capacities on service efficiency. We perform an agent-based simulation of SAEVs across the Rouen Normandie metropolitan area in France. The simulation process features impact assessment by considering dynamic demand responsive to the network and traffic.Research results suggest that the performance of SAEVs is strongly correlated with the charging infrastructure. Importantly, faster charging infrastructure and placement of charging locations according to minimized distances between demand hubs and charging stations result in a higher performance. Further analysis indicates the importance of dispersing charging stations across the service area and its impacts on service effectiveness. The results also underline that SAEV battery capacity has to be selected carefully such that to avoid the overlaps between demand and charging peak times. Finally, the simulation results show that the performance indicators of SAEV service are significantly improved by providing battery swapping infrastructure.  相似文献   

20.
This paper presents a novel methodology to control urban traffic noise under the constraint of environmental capacity. Considering the upper limits of noise control zones as the major bottleneck to control the maximum traffic flow is a new idea. The urban road network traffic is the mutual or joint behavior of public self-selection and management decisions, so is a typical double decision optimization problem.The proposed methodology incorporates theoretically model specifications. Traffic noise calculation model and traffic assignment model for O–D matrix are integrated based on bi-level programming method which follows an iterated process to obtain the optimal solution. The upper level resolves the question of how to sustain the maximum traffic flow with noise capacity threshold in a feasible road network. The user equilibrium method is adopted in the lower layer to resolve the O–D traffic assignment.The methodology has been applied to study area of QingDao, China. In this illustrative case, the noise pollution level values of optimal solution could satisfy the urban environmental noise capacity constraints. Moreover, the optimal solution was intelligently adjusted rather than simply reducing the value below a certain threshold. The results indicate that the proposed methodology is feasible and effective, and it can provide a reference for a sustainable development and noise control management of the urban traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号