Control of the electronic non-circular gear brake (ENGB) involves challenges, including the non-linear variation of loads and the effect of friction, which is dependent upon load. The controller must be designed based on modelling information in order to enhance control performance. This study performed model identification of the ENGB system using a DOB-based model identification method. By employing the nearest neighbor search method, the even-odd disturbance was separated without the influence of hysteresis even in situations with low control precision. The accuracy of the resulting ENGB system model was validated through experiments. The self-energizing effect due to friction between the brake disc and pad within the mechanical system was also validated. 相似文献
In this paper, a robust sideslip angle controller based on the direct yaw moment control (DYC) is proposed for in-wheel motor electric vehicles. Many studies have demonstrated that the DYC is one of the effective methods to improve vehicle maneuverability and stability. Previous approaches to achieve the DYC used differential braking and active steering system. Not only that, the conventional control systems were commonly dependent on the feedback of the yaw rate. In contrast to the traditional control schemes, however, this paper proposes a novel approach based on sideslip angle feedback without controlling the yaw rate. This is mainly because if the vehicle sideslip angle is controlled properly, the intended sideslip angle helps the vehicle to pass through the corner even at high speed. On the other hand, the vehicle may become unstable because of the too large sideslip caused by unexpected yaw disturbances and model uncertainties of time-varying parameters. From this aspect, disturbance observer (DOB) is employed to assure robust performance of the controller. The proposed controller was realized in CarSim model described actual electric vehicle and verified through computer simulations. 相似文献
To study the effects of residual ash on the capture and regeneration of a diesel particulate filter (DPF), repeated capture and complete regeneration experiments were conducted. An engine exhaust particulate sizer was used to measure the particle size distribution of diesel in the front and back of DPF. Discrepancies in the size distribution of the particulate matter in repeated trapping tests were analyzed. To achieve complete DPF regeneration, a DPF regeneration system using nonthermal plasma technology was established. The regeneration carbon removal mass and peak temperatures of DPF internal measuring points were monitored to evaluate the effect of regeneration. The mechanism explaining the influence of residual ash on DPF capture and regeneration was thoroughly investigated. Results indicate that the DPF trapping efficiencies of the nuclear-mode particles and ultrafine particles have significant improvements with the increase quantity of residual ash, from 90 % and 96.01 % to 94.17 % and 97.27 %, respectively. The exhaust backpressure of the DPF rises from 9.41 kPa to 11.24 kPa. Heat transfer in the DPF is improved with ash, and the peak temperatures of the measuring points accordingly increase. By comparing the regeneration trials, the elapsed time for complete regeneration and time difference for reaching the peak temperature between adjacent reaction interfaces are extended with increased quantity of ash. The carbon removal mass rises by 34.00 %. 相似文献
This paper presents a novel nonlinear dynamic model of a multi-axle steering vehicle to estimate the lateral wear amount of tires. Firstly, a 3DOF nonlinear vehicle dynamic model is developed, including dynamic models of the hydropneumatic suspension, tire, steering system and toe angle. The tire lateral wear model is then built and integrated into the developed vehicle model. Based on the comparison of experimental and simulation results, the nonlinear model is proved to be better than a linear model for the tire wear calculation. In addition, the effects of different initial toe angles on tire wear are analyzed. As simulation results shown, the impact of the dynamic toe angle on the tire wear is significant. The tire wear amount will be much larger than that caused by normal wear if the initial toe angle increases to 1° - 1.5°. The results also suggest that the proposed nonlinear model is of great importance in the design and optimazation of vehicle parameters in order to reduce the tire wear. 相似文献
Much of the literature in recent years has examined the vulnerability of transportation networks. To identify appropriate and operational measures of nodal centrality using connectivity in the case of heavy rail systems, this paper presents a set of comprehensive measures in the form of a Degree of Nodal Connection (DNC) index. The DNC index facilitates a reevaluation of nodal criticality among distinct types of transfer stations in heavy rail networks that present a number of multiple lines between stations. Specifically, a new classification of transfer stations—mandatory transfer, non-mandatory transfer, and end transfer—and a new measure for linkages—link degree and total link degree—introduces the characteristics of heavy rail networks when we accurately expose the vulnerability of a node. The concept of partial node failure is also introduced and compare the results of complete node failure scenarios. Four local and global indicators of network vulnerability are derived from the DNC index to assess the vulnerability of major heavy rail networks in the United States. Results indicate that the proposed DNC indexes can inform decision makers or network planners as they explore and compare the resilience of multi-hubs and multi-line networks in a comprehensive but accurate manner regardless of their network sizes.
Research on walking behavior has become increasingly more important in the field of transportation in the past decades. However, the study of the factors influencing the scheduling decisions related to walking trips and the exploration of the differences between travel modes has not been conducted yet. This paper presents a comparison of the scheduling and rescheduling decisions associated with car driving trips and walking trips by habitual car users using a data set collected in Valencia (Spain) in 2010. Bivariate probit models with sample selection are used to accommodate the influence of pre-planning on the decision to execute a travel as pre-planned or not. The explicative variables considered are: socio-economic characteristics of respondents, travel characteristics, and facets of the activity executed at origin and at destination including the scheduling decisions associated with them. The results demonstrate that a significant correlation exists between the choices of pre-planning and rescheduling for both types of trips. Whether for car driving or walking trips, the scheduling decisions associated with the activity at origin and at destination are the most important explicative factors of the trip scheduling and rescheduling decisions. However, the rescheduling of trips is mainly influenced by modifications in the activity at destination. Some interesting differences arise regarding the rescheduling decision processes between travel modes: if pre-planned, walking trips are less likely to be modified than car driving trips, showing a more rigid rescheduling behavior. 相似文献
Bike Share Toronto is Canada’s second largest public bike share system. It provides a unique case study as it is one of the few bike share programs located in a relatively cold North American setting, yet operates throughout the entire year. Using year-round historical trip data, this study analyzes the factors affecting Toronto’s bike share ridership. A comprehensive spatial analysis provides meaningful insights on the influences of socio-demographic attributes, land use and built environment, as well as different weather measures on bike share ridership. Empirical models also reveal significant effects of road network configuration (intersection density and spatial dispersion of stations) on bike sharing demands. The effect of bike infrastructure (bike lane, paths etc.) is also found to be crucial in increasing bike sharing demand. Temporal changes in bike share trip making behavior were also investigated using a multilevel framework. The study reveals a significant correlation between temperature, land use and bike share trip activity. The findings of the paper can be translated to guidelines with the aim of increasing bike share activity in urban centers. 相似文献
This study identifies the determinants of the empty taxi trip duration (ETTD) by combining three high-resolution databases—geolocation data in New York City, geodatabase of urban planning data, and transportation facilities data. Considering the nature of duration data, hazard-based duration model is proposed to explore the relationships between causal factors and ETTD, coupling with three variations of baseline hazard distribution, i.e., Weibull distribution with heterogeneity, Weibull distribution, and log-logistic. Furthermore, the likelihood ratio test is presented to implement comparisons of three baseline hazard distributions, as well as spatial and temporal transferability of causal factors. The results show significant complementary effects by subway system and competitive effects by city bus and bicycling system, as well as significant impacts of trip length, airport trip, average annual income, and employment rate. Urban built environment, for instance, density of road, public facilities, and recreational sites and ratio of green space, has various impacts on ETTD. The elasticity estimations confirm significant spatial and temporal heterogeneity in impacts on ETTD. In addition, the analysis on elasticity also reveals the considerable impacts of severe traffic congestion on ETTD within Manhattan. The modeling can assist stakeholders in understanding empty taxi movements and measuring taxi system efficiency in urban areas. 相似文献
Walking has been highlighted as an independent transportation mode as well as an access/egress mode to/from public transit to encourage the use of more sustainable transport systems. However, walking does not seem to have priority over other transportation modes, especially in areas where various modes of movement are in conflict. The pedestrian push-button system seems to be a solution to distribute the right of way. The focus of this study is on the performance issue of the pedestrian push-button. Specifically, this study deals with issues related to mid-block crossings and attempts to answer two questions: whose waiting time is longer at pre-timed and push-button crossings, pedestrians, or vehicles? and which system – pre-timed or push-button – is better in terms of total waiting time? According to our simulation analyses, if the pedestrian flow rate is less than 120, 85, and 70 ped/h for two-, three-, and four-lane roads, respectively, the push-button system is recommended. 相似文献
This study estimates a random parameter (mixed) logit model for active transportation (walk and bicycle) choices for work trips in the New York City (using 2010–2011 Regional Household Travel Survey Data). We explored the effects of traffic safety, walk–bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk–bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the local authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Further, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists, will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The model would be an essential tool to estimate the impact of improving traffic safety and walk–bike infrastructure which will assist in investment decision making. 相似文献