首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
公路运输   8篇
水路运输   3篇
综合运输   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  1973年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Traffic simulation models often neglect the important role of motorcycles and assume a flow of various combinations of cars. This paper addresses how much different would be the behavior of a car driver while following a motorcyclist compared to cases in which a car follows another car, along with a segment of an urban highway in the non-congested flow. Recognition of such a difference might help to develop existing simulation models and to improve the behavior of car drivers in such a way to lead to lower accidents with motorcycles. To reach the goal, a GHR (Gazis-Herman-Rothery) model for car following is applied and data have been collected by video cameras during 15?min time intervals in three different days. Analysis of 198 car-motorcycle and 374 car-car following observations has indicated that when a car driver follows a motorcycle, keeps a higher headway (about 10?m in the low speed) with a lower acceleration/deceleration in comparison with the situation in which car driver follow another one. It means that the behavior of the follower car driver would be more cautious compared to situations in which a car driver follows another one, especially in space headways <10?m. In addition to main findings of the paper for developing a more realistic simulation program, the paper also addresses that in cases when the required safe space between a car and a motorcycle would be endangered, a warning message could be generated for the car driver (by implementing an in-veh ITS technology) to warn driver about keeping a safe distance.  相似文献   
2.
In this paper, a vehicle's lateral dynamic model is developed based on the pure and the combined-slip LuGre tyre models. Conventional vehicle's lateral dynamic methods derive handling models utilising linear tyres and pure-slip assumptions. The current article proposes a general lateral dynamic model, which takes the linear and nonlinear behaviours of the tyre into account using the pure and combined-slip assumptions separately. The developed methodology also incorporates various normal loads at each corner and provides a proper tyre–vehicle platform for control and estimation applications. Steady-state and transient LuGre models are also used in the model development and their responses are compared in different driving scenarios. Considering the fact that the vehicle dynamics is time-varying, the stability of the suggested time-varying model is investigated using an affine quadratic stability approach, and a novel approach to define the critical longitudinal speed is suggested and compared with that of conventional lateral stability methods. Simulations have been conducted and the results are used to validate the proposed method.  相似文献   
3.
In this paper, a vehicle sharing system with multi-transportation modes and allowable shortage is presented. This model aims to minimize the system's total cost by using optimum locations and number of stations, routes, transportation modes, station capacities for different modes and time between stations balancing. Because of the model's complexity, currently available proprietary software is not able to solve the model in a reasonable computational time, so a hybrid algorithm based on a genetic algorithm (GA) and particle swarm optimization is presented. The results confirm its efficiency compared with the classic GA and exact solution methods. Moreover, a sensitivity analysis shows the applicability of the proposed algorithm.  相似文献   
4.
This paper proposes an approach for the estimation of the road angles independent from the road friction conditions. The method employs unknown input observers on the roll and pitch dynamics of the vehicle. The correlation between the road angle rates and the pitch/roll rates of the vehicle is also investigated to increase the accuracy. Dynamic fault thresholds are implemented in the algorithm to ensure reliable estimation of the vehicle body and road angles. Performance of the proposed approach in reliable estimation of the road angles is experimentally demonstrated through vehicle road tests. Road test experiments include various driving scenarios on different road conditions to thoroughly validate the proposed approach.  相似文献   
5.
Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.  相似文献   
6.
In this article, a conceptual framework for a comprehensive evaluation of the diffusion process of alternative fuel vehicles is introduced. The framework takes into account the most influencing stakeholders, including car manufacturers, car dealers, consumers, energy supply system, fuel stations and government. The underlying mathematical models of different stakeholders are then integrated in one model of the whole energy and transport system. The hybrid modelling framework links the two powerful dynamic simulation approaches of system dynamics (SD) and agent-based (AB) modelling. Integrated modelling structure gives the potential of building more accurate and computationally efficient models for simulating the transition to sustainable mobility. We specify the integration process and the most important linking variables between various energy and transport components. Then the application of the integrated model is explained through a test case and, finally, the applicability of the hybrid AB and SD approach and its potential contribution to the models of transition to sustainable mobility will be concluded.  相似文献   
7.
This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.  相似文献   
8.
This work defines Transit Schedule Design (TSD) as an optimization problem to construct the transit schedule with the decision variables of the location of timing points and the amount of slack time associated with each timing point. Two heuristic procedures, Ant Colony and Genetic Algorithms, are developed for constructing optimal schedules for a fixed bus route. The paper presents a comparison of the fundamental features of the two algorithms. They are then calibrated based on data generated from micro-simulation of a bus route in Melbourne, Australia, to give rise to (near) optimal schedule designs. The algorithms are compared in terms of their accuracy and efficiency in providing the minimum cost solution. Although both procedures prove the ability to find the optimal solution, the Ant Colony procedure demonstrates a higher efficiency by evaluating less schedule designs to arrive at a ‘good’ solution. Potential benefits of the developed algorithms in bus route planning are also discussed.  相似文献   
9.
The random vibration of a nonuniform cantilever beam with a concentrated mass at its end, is studied as a simple model of the suspension spring of a motor vehicle. The spectral response of the displacement of the concentrated mass is obtained when the beam is subjected to the random motion of the support. The conditions for the validity of the single degree approximation is also discussed.  相似文献   
10.
The aim of this study is to calculate hydrodynamic performance and ventilation flow around wedge, 2D blade and 3D surface piercing propeller (SPP), using computational fluid dynamic based on Reynolds-averaged Navier–Stokes method. First, numerical analyses for two-phase fluid flow around the wedge and 2D blade section (cupped and non-cupped) are presented. Flow ventilation, pressure distribution and forces are determined and compared with experimental data. Then, the method is extended to predict the hydrodynamic performance of propeller SPP-841B. The propeller exhibits a cupped blade. In the simulated configuration, SPP is one-third submerged (I = h/D = 0.33) and is working at various loadings with full ventilation occurring at low advance coefficient (J). The open water performance, pressure distribution, forces/moments and ventilation pattern on the SPP-841B model are obtained and compared with experimental data. The numerical results are in good agreement with experimental measurements, especially at high advance coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号