排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
隧道开挖改变了围岩的渗流场和应力场,致使围岩的含水量分布发生改变,若遇到膨胀岩体,吸水膨胀失水收缩,产生裂隙,降低膨胀岩强度,膨胀压力显著增加,导致衬砌开裂及渗漏水,随着时间增加越来越严重,给隧道安全运营带来隐患,不能准确把握膨胀压力的变化规律,病害很难得到控制。本文以马岭头隧道为依托分析膨胀性围岩隧道病害的微观宏观机理,通过SEM和室内试验及数值模拟研究,发现膨胀岩含水率随时间升高(13. 3~18. 6%)膨胀岩层间吸水导致体积增大,凝聚力减少(60~20kPa),内摩擦角基本变化很小,膨胀力增加(32. 7~72. 3kPa,随着时间推移出现流变软化,衬砌内力也相应地增大(34. 5~387kN,12. 2~109. 9kN·m);对比2004年、2015年的整治设计,其轴力和弯矩均低于安全系数,提出采用复合式衬砌的整治措施和预测膨胀岩长期变形规律,达到根治隧道病害的目的,结论可为膨胀性围岩隧道设计施工提供参考依据。 相似文献
2.
结合EBG150架桥机自身长度短、工作灵活性好和生产效率高的优点,以及使用后轮轮压大,受工程结构承载能力制约较多的缺点。较系统地介绍了该机在椒江大桥实际使用及解决制约条件的办法。 相似文献
3.
4.
5.
隧道开挖改变了地下水的渗流路径,引起隧道围岩的含水量增加,若遇到膨胀性岩土体,膨胀压力显著增加,导致衬砌开裂,随着时间越来越严重。如马岭头隧道与膨胀性破碎错动带呈30°斜交,断层带的厚度为4~15m,为典型强膨胀潜势膨胀岩,在隧道运营过程中出现两次病害。本文以马岭头隧道为依托分析膨胀性围岩隧道病害随时间变化规律,从现场调查和地质勘察发现地质参数发生了较大变化,含水率升高(13.3%~18.6)和膨胀力增加(32.7k Pa~72.3k Pa),衬砌内力也相应地增大(103.5~293k N,29.5~133.5k N.m),导致病害反复出现,给隧道安全运营带来隐患;然后,预测膨胀性围岩参数随时间的变化规律,计算衬砌的内力,提出相应的治理措施,达到根治隧道病害的目的,研究结果为膨胀性围岩隧道设计施工提供参考依据。 相似文献
6.
1