排序方式: 共有1870条查询结果,搜索用时 15 毫秒
1.
The rate equations and the power evolution equations based on excited state absorption (ESA) and cooperative upconversion (CUC) of high concentration erbium-doped yttrium aluminum garnet (YAG) transparent ceramic waveguide amplifier are set up to analyze the effects of the pump power, active ion concentration and waveguide length on the amplifier gain and noise figure (NF). The numerical analysis predicts that with a pump power of 100mW, an active ion concentration of 1.0×1026 ion/m3 and a waveguide length of 3 cm, a small-signal gain of 30 dB and an NF of 5 dB can be achieved in the micro-chip amplifier. 相似文献
2.
Kazuo?SuzukiEmail author Hisashi?Kai Shigetoshi?Kashiwabara 《Journal of Marine Science and Technology》2005,10(2):61-69
A hypothesis of the minimum energy of secondary flow, suggested by Bessho, is introduced here. According to this hypothesis, it can be expected that hull forms having frame lines with a minimum energy of secondary flow show less form drag. In the first part of this article, secondary flow energy is evaluated for the cases with and without a free-surface effect, and Bessho’s hypothesis is confirmed for practical hull forms. Then optimization methods for the stern hull form are suggested, in which a nonlinear optimization technique is introduced. Numerical examples are given for a practical tanker hull form and a practical container hull form. From these studies, the suggested optimization method can be confirmed as a simplified and practical design method to the select frame lines of stern hull forms. 相似文献
3.
CAI Cheng-tao ZHU Qi-dan YAN Yong-jie 《船舶与海洋工程学报》2005,4(4):43-46
Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter' s security and other performance capabilities. In testing, however, it has been difficult to measure the elevation when the rotor reaches high speeds. To get a simple, fast and highly accurate measurement system, photo electricity technology was applied to measuring the blade running elevation. Discussed is the measurement principle of blade running elevation, tire design of the measurement system and analysis of the measurement precision. 相似文献
4.
Naoya Umeda Akihiko Matsuda Masami Hamamoto Shiro Suzuki 《Journal of Marine Science and Technology》1999,4(2):45-57
A systematic method for assessing intact ship stability with a free-running model in a seakeeping and maneuvering basin is
proposed in this paper. Model experiments were carried out in extremely steep regular waves for a model drifting, running
in head seas, and quartering seas. This method was applied to two purse seiners, and efficiently identified thresholds in
metacentric heights for capsizing of these ships. These capsizing thresholds are compared with requirements of the IMO Code
on Intact Stability. This series of model experiments also confirms that capsizing at the threshold occurs only in quartering
seas, and shows that capsizing is caused by broaching, loss of stability on a wave crest, or bow diving.
Received for publication on Jan. 20, 1999; accepted on July 6, 1999 相似文献
5.
HANBing ZHAOGuo-liang 《船舶与海洋工程学报》2004,3(1):24-27
The course-keeping control of underactuated hovercraft with two aft propellers was considered. The control of the heading error and cross-track error was accomplished by the yaw torque merely in this case. The hovercraft dynamic model is nonlinear and underactuated. At first the Controllability of course-keeping control for hovercraft was proved, then a course-keeping control law was derived that keeps hovercraft heading constant as well as minimizes the lateral movement of hovercraft. The proposed law guarantees heading error and sway error all converge to zero exponentially. Simulation tests were carried out to illustrate the effectiveness of the proposed control law. For further research, the disturbance influence would be considered in the dynamic equations. 相似文献
6.
ZHANGJun-an XUEKai ZHANGJia-tai ZHANGQiang 《船舶与海洋工程学报》2004,3(1):87-90
At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG. 相似文献
7.
8.
Young-Doo Kwon Seong-Hwa Jun Jin-Sik Han Dong-Jin Lee 《International Journal of Automotive Technology》2018,19(1):99-106
In the automobile industry, the service life of gaskets is defined as the time until which a released gasket recovers 60 % of the original compression. It was observed that the recovery curves of gaskets were highly nonlinear at high temperatures, and relatively nonlinear at temperatures above the room temperature. However, it was also noted that the recovery curves of the gaskets at temperatures below room temperature exhibited linearity with respect to the ln(time). Automotive manufacturers demand gasket life criteria that exceed a specific time or the entire life of a car. In the case of gaskets used at lower temperatures, since materials encounter losses in its flexibility and conformability, the definition of service life specifying a 60 % recovery may not be sufficiently safe to eliminate possible leakages. In this study, new gasket life criteria that could be used at low temperatures were proposed. The new criteria were proposed based on the change in Young’s modulus of the gasket material in order to conserve the sealing capability. 相似文献
9.
10.
Hyung Seok Heo Suk Jung Bae Sung Mok Hong Seung Uk Park 《International Journal of Automotive Technology》2018,19(2):221-231
Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery. 相似文献