首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1869篇
  免费   1篇
公路运输   183篇
综合类   657篇
水路运输   663篇
综合运输   367篇
  2021年   1篇
  2018年   334篇
  2017年   290篇
  2016年   248篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   56篇
  2011年   204篇
  2010年   213篇
  2009年   44篇
  2008年   177篇
  2007年   121篇
  2005年   53篇
  2004年   43篇
  2003年   55篇
  2002年   16篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有1870条查询结果,搜索用时 15 毫秒
1.
The rate equations and the power evolution equations based on excited state absorption (ESA) and cooperative upconversion (CUC) of high concentration erbium-doped yttrium aluminum garnet (YAG) transparent ceramic waveguide amplifier are set up to analyze the effects of the pump power, active ion concentration and waveguide length on the amplifier gain and noise figure (NF). The numerical analysis predicts that with a pump power of 100mW, an active ion concentration of 1.0×1026 ion/m3 and a waveguide length of 3 cm, a small-signal gain of 30 dB and an NF of 5 dB can be achieved in the micro-chip amplifier.  相似文献   
2.
A hypothesis of the minimum energy of secondary flow, suggested by Bessho, is introduced here. According to this hypothesis, it can be expected that hull forms having frame lines with a minimum energy of secondary flow show less form drag. In the first part of this article, secondary flow energy is evaluated for the cases with and without a free-surface effect, and Bessho’s hypothesis is confirmed for practical hull forms. Then optimization methods for the stern hull form are suggested, in which a nonlinear optimization technique is introduced. Numerical examples are given for a practical tanker hull form and a practical container hull form. From these studies, the suggested optimization method can be confirmed as a simplified and practical design method to the select frame lines of stern hull forms.  相似文献   
3.
Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter' s security and other performance capabilities. In testing, however, it has been difficult to measure the elevation when the rotor reaches high speeds. To get a simple, fast and highly accurate measurement system, photo electricity technology was applied to measuring the blade running elevation. Discussed is the measurement principle of blade running elevation, tire design of the measurement system and analysis of the measurement precision.  相似文献   
4.
A systematic method for assessing intact ship stability with a free-running model in a seakeeping and maneuvering basin is proposed in this paper. Model experiments were carried out in extremely steep regular waves for a model drifting, running in head seas, and quartering seas. This method was applied to two purse seiners, and efficiently identified thresholds in metacentric heights for capsizing of these ships. These capsizing thresholds are compared with requirements of the IMO Code on Intact Stability. This series of model experiments also confirms that capsizing at the threshold occurs only in quartering seas, and shows that capsizing is caused by broaching, loss of stability on a wave crest, or bow diving. Received for publication on Jan. 20, 1999; accepted on July 6, 1999  相似文献   
5.
The course-keeping control of underactuated hovercraft with two aft propellers was considered. The control of the heading error and cross-track error was accomplished by the yaw torque merely in this case. The hovercraft dynamic model is nonlinear and underactuated. At first the Controllability of course-keeping control for hovercraft was proved, then a course-keeping control law was derived that keeps hovercraft heading constant as well as minimizes the lateral movement of hovercraft. The proposed law guarantees heading error and sway error all converge to zero exponentially. Simulation tests were carried out to illustrate the effectiveness of the proposed control law. For further research, the disturbance influence would be considered in the dynamic equations.  相似文献   
6.
At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.  相似文献   
7.
8.
Uncontrolled expansion of combustion wave in spark ignited internal combustion engine causes knock effect which seriously degrades efficiency and lifetime of the engine. Thus, accurate knock detection and control are essential for obtaining a desired performance from the engine. Usually, knock sensor is used to detect this phenomenon but it has limited accuracy especially at engine high-speed rotations because of natural vibration and external noises. In this study an effective method based on Non-Local Mean (NLM) algorithm has been proposed to improve the knock detection accuracy. This method is evaluated based on four different indicators and four engine cylinders. The results show 52.9 % improvement in knock detection. Also feasibility of real time execution of this method based on embedded hardware has been studied.  相似文献   
9.
Ensuring engine efficiency is a crucial issue for automotive manufacturers. Several manufacturers focus on reducing the time taken to develop and introduce brand new vehicles to the market. Thus, a synergic approach including various simulations is generally adopted to achieve a development schedule and to reduce the cost of physical tests. This study involved proposing a design process that is very useful in the preliminary development stage through effective support from simulations. This type of simulation-based design process is effective in developing timing chain drives; the use of this process, based on results from multiple trials, showed improvements in performance including low friction and vibration, improved durability, and cost-effective part design when compared to conventional processes. This study proposes an integrated approach to the preliminary design of an automotive timing chain system. The approach involves structural and dynamic analyses. The details of the design process are described by using the case of a virtual engine. This study conducted and summarized a dynamic and structural analysis as well as topological optimization to describe a process to obtain optimal results. The results of this study indicated the following improvements in overall performance factors: 12.1 % improvement in transmission error, 10.1 % reduction in chain tension, 46 % reduction in tensioner arm weight, and 11 % reduction in transversal displacement.  相似文献   
10.
The purpose of this study is to propose a concept design process for an automotive body structure using technical information on the major joints and members of vehicles. First, in order to collect the technical information on major joints and members, 17 vehicles were selected using benchmark data. The collected technical information for the selected vehicles was the cross sectional shapes of each joint and member which were used for the analysis of joint stiffness, crashworthiness and static stiffness of the member to make a database along with cross section properties. This study applied a ‘What If Study’ technique to perform a concept design of an automotive body using the analyzed information and selected cross section meeting the design objectives. The criteria for the selection of the cross section were defined by subdividing the defined design objectives of an automotive body structure and constraints into members and joints. In order to configure an analysis model of an automotive body structure using the selected cross section, a shape parametric model was used and static stiffness, dynamic stiffness and crashworthiness were assessed to evaluate the configured automotive body structure. The evaluation result showed that the crashworthiness and static/dynamic stiffness were improved compared to an existing body structure. In addition, the weight of the body structure was reduced. Through this study, the process that can rapidly and effectively derive and evaluate the concept design of an automotive body structure was defined. It is expected that, henceforth, this process will be helpful for the study of automotive body structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号