首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   5篇
公路运输   58篇
综合类   9篇
水路运输   53篇
铁路运输   15篇
综合运输   58篇
  2023年   17篇
  2022年   34篇
  2021年   2篇
  2019年   3篇
  2018年   26篇
  2017年   4篇
  2016年   13篇
  2015年   1篇
  2014年   6篇
  2013年   21篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  1999年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
排序方式: 共有193条查询结果,搜索用时 312 毫秒
1.
[目的]系统地研究初始横倾角对随机横浪下船舶横摇运动响应的影响。[方法]以路径积分法为基础,通过数值求解控制横摇运动微分方程概率属性的Fokker-Planck方程,得到横摇运动响应的概率分布。[结果]结果显示,初始横倾角对船舶横摇运动响应谱的影响有限,但对横摇角概率分布以及横摇运动响应极值分布的影响十分明显,且会造成船舶安全性的显著恶化。[结论]路径积分法可作为研究随机海浪下船舶横摇运动特性的有效数值方法。  相似文献   
2.
This paper presents an off‐line forecasting system for short‐term travel time forecasting. These forecasts are based on the historical traffic count data provided by detectors installed on Annual Traffic Census (ATC) stations in Hong Kong. A traffic flow simulator (TFS) is developed for short‐term travel time forecasting (in terms of offline forecasting), in which the variation of perceived travel time error and the fluctuations of origin‐destination (O‐D) demand are considered explicitly. On the basis of prior O‐D demand and partial updated detector data, the TFS can estimate the link travel times and flows for the whole network together with their variances and covariances. The short‐term travel time forecasting by O‐D pair can also be assessed and the O‐D matrix can be updated simultaneously. The application of the proposed off‐line forecasting system is illustrated by a numerical example in Hong Kong.  相似文献   
3.
Research purposes: The vertical deformation of high-speed railway (HSR) bridge will cause the track irregularity, which threatens the safe and efficient operation of the HSR. Taking the 32 m simple supported beam bridge as the research object, based on the existing mapping analytical model for bridge vertical deformation and rail geometry, the influence of the track regularity of the CRTS Ⅰ slab ballastless track structure caused by the key parameters such as the bridge vertical deformation amplitude, the hanging length of the beam end and the vertical stiffness of mortar layer were studied, and the corresponding measures to control the rail deformation were proposed, to provide theoretical reference for comprehensive treatment of rail deformation of HSR bridge. Research conclusions:(1) The pier settlement, the vertical rotation of the beam end and the beam fault will cause the rail to follow the beam deformation, and "up-warping" of the rail on the vertical deformation boundary will appear. (2) The rail deformation is directly proportional to the vertical deformation amplitude of the bridge and the key to control the rail deformation is to reduce the vertical deformation of the bridge. (3) The rail deformation can be controlled by reducing the hanging length of beam and vertical stiffness of mortar layer. (4) The research results can provide a theoretical reference for controlling the vertical rail deformation of high-speed railway bridges. © 2018, Editorial Department of Journal of Railway Engineering Society. All right reserved.  相似文献   
4.
Wong  Yale Z.  Hensher  David A. 《Transportation》2021,48(4):1837-1863
Transportation - Mobility as a service (MaaS) promises a bold new future where bundled public transport and shared mobility options (carsharing, ridesharing, bikesharing and microtransit) will...  相似文献   
5.
Water bursts during tunnel construction endanger construction, and it is therefore necessary to reserve a waterproof dike with the required thickness to avoid water bursts and to take reinforcement of the dike and treatment of the structure liable to trigger a water burst. Using the water burst at K5+398 of the Mingyueshan tunnel of the Shanghai-Chengdu expressway as an example, and considering the type of tunnel section and the upright mudstone of the dike, the waterproof dike at the work face is simplified as a round thin plate. A formula for the calculation of a minimum safety thickness for the critical waterproof dike is deduced by analyzing the force applied on the water-proof dike, and the minimum safety thickness for the water burst section at K5+398 of the Mingyueshan tunnel is cal-culated. The numerical simulation analysis demonstrates the critical thickness of waterproof dike at K5+398 of the Mingyueshan tunnel is 1.4-1.55 m, and the calculated water inflow and water burst basically agree with the actual condition. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
6.
In order to study the diffusion law of grouting slurry in the water-rich sand layer under flowing water conditions, a grouting test model consisting of a main test system, a grouting system, and a measurement system was developed. And for detecting the diffusion scope of the grouts, a new resistivity method was proposed. It is found that the relationship between grouting pressure and grouting rate during the test is strong. Under hydrodynamic conditions, the grouting slurry diffuses elliptically. Due to gravity and the effect of the upper water flow, the center of gravity of the ellipsoid is below the grouting outlet, and the grouting effectively improves the physical and mechanical properties of water-rich sand bodies. At the same time, the resistivity method has a good application effect on the detection of grouting diffusion range. The range of slurry diffusion obtained by the resistivity method is basically consistent with the boundary of the stone body after excavation, indicating that the resistivity method is reliable for detection of grouting range in dynamic water-rich sand layer. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
7.
The application of prefabricated tunnel technology has been become a new research field both in China and abroad. Based on the running tunnel between Yufuhe station and Wangfuzhuang station of Jinan rail transit line R1, a new prefabricated tunnel construction technology, the PBA method is presented. This paper makes a detailed discussion on section form, supporting scheme and construction process of the PBA method. In this study, 3D a new 3D numerical model for PBA method is presented by finite difference numerical simulation software Flac and the construction processes are modeled. The rule of ground surface settlement, ground deformation and structural stress caused by PBA method is studied in detail. Results show that the structure of PBA method can effectively control the deformation magnitude and scope. Stress concentration appears at the prefabricated connection parts and the reinforcement needs to check. The total assembled structure forms the load-bearing system after the completion of the lateral wall. The built-in depth of the precast pile and pile bottom grouting quality should to be ensured to control the displacement of the precast piles. The results of this study will be a useful reference for similar projects in the future. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
8.
This paper proposes the adoption of an integrated inventory and transportation system (IITS) to minimize the total costs of inventory and transportation. A non-linear programing is developed by analyzing transportation and inventory costs with one supplier and many retailers in the distribution environment. The paper compares the proposed model with the traditional approach in computing total costs with numerical data. The results indicate that the total costs can be optimized by adopting integrated programing rather than the traditional approach, along with achieving improved customer service levels. In particular, sensitivity analysis is applied to determine the performance of the IITS under various transportation costs, holding costs and shortage costs. It shows that the transportation cost per unit is most sensitive in the proposed model. In this situation, the IITS is more effective for cost saving when set-up cost, holding and shortage costs are high, but is less effective for situations involving high per-unit transportation costs.  相似文献   
9.
Based on a shield-driven running tunnel project of Hangzhou Metro Line 2, this paper carries out field measuring of the ground surface deformation caused by two different shield machines in double-tube tunnelling in soft soil areas, obtains the laws of the surface deformation caused by shield-driven double-tube tunnelling and verifies the applicability of the modified Peck formula to double-tube tunnelling. The results show that in soft soil areas the impacts on ground surface deformation caused by different shield construction parameters in the previously and subsequently excavated tunnels are different, while the surface deformation changes sharply before and after the shield machine passing through the cutting face, and a rebound phenomenon occurs when the shield tail passes through the cutting face due to the influence of the grouting; The cutterhead torque of the shield machine in soft soil areas can be composed of five calculation factors, and the calculation results are in good agreement with the measured values. The larger the opening rate of the shield cutterhead is, the larger the average torque value will be, the higher the percentage of large ground loss rate will be, and the larger the maximum ground surface settlement will be; The ratio of cutterhead torque T to mucking volume per ring Q is used as the control parameter for analyzing the ground surface settlement, and a certain positive correlation between the ratio and the surface settlement value is determined, the smaller the cutterhead opening rate is, the more accurate the fitting results will be. © 2022, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
10.
Fast and predictive simulation tools are prerequisites for pursuing simulation based engine control development. A particularly attractive tradeoff between speed and fidelity is achieved with a co-simulation approach that marries a commercial gas dynamic code WAVE™ with an in-house quasi-dimensional combustion model. Gas dynamics are critical for predicting the effect of wave action in intake and exhaust systems, while the quasi-D turbulent flame entrainment model provides sensitivity to variations of composition and turbulence in the cylinder. This paper proposes a calibration procedure for such a tool that maximizes its range of validity and therefore achieves a fully predictive combustion model for the analysis of a high degree of freedom (HDOF) engines. Inclusion of a charge motion control device in the intake runner presented a particular challenge, since anything altering the flow upstream of the intake valve remains “invisible” to the zero-D turbulence model applied to the cylinder control volume. The solution is based on the use of turbulence multiplier and scheduling of its value. Consequently, proposed calibration procedure considers two scalar variables (dissipation constant C β and turbulence multiplier C M ), and the refinements of flame front area maps to capture details of the spark-plug design, i.e. the actual distance between the spark and the surface of the cylinder head. The procedure is demonstrated using an SI engine system with dual-independent cam phasing and charge motion control valves (CMCV) in the intake runner. A limited number of iterations led to convergence, thanks to a small number of adjustable constants. After calibrating constants at the reference operating point, the predictions are validated for a range of engine speeds, loads and residual fractions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号