排序方式: 共有3条查询结果,搜索用时 25 毫秒
1
1.
针对重型载货汽车因气压制动系统发生管路破裂、机械故障或热衰退导致制动效能下降且不易察觉从而引发严重交通事故的问题,提出基于主成分分析降维(PCA降维)和马尔可夫模型的气压制动系统危险状态识别方法。考虑到三轴载货汽车双回路制动系统的结构复杂性以及制动过程制动踏板动作、系统压力建立和实现车辆减速具有明显的时序性特点,首先采用PCA降维的方法对系统状态进行辨识;然后运用驾驶人制动意图与制动系统响应的双层隐形马尔可夫模型对系统状态进行识别。受驾驶人习惯影响制动踏板作用瞬间辨识度低,采用混合高斯聚类法提取不同制动意图时制动保持阶段数据建立制动意图识别模型和系统响应识别模型,通过二者匹配程度判定系统状态。最后,分别依据实车试验数据对模型进行离线训练和在线辨识验证。试验结果表明:系统正常状态下,基于PCA降维和马尔可夫模型相结合的识别方法能够准确、有效地识别制动系统状态;制动管路断开压力降低状态下,PCA降维方法能够及时有效识别其危险状态。 相似文献
2.
3.
1