排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
2.
为实现降雨条件下高速公路路段行程时间短时预测,掌握恶劣天气下交通信息、提供交通诱导和决策支持,在已获取交通和气象数据基础上应用半距离法估计路段行程时间.并以遗传算法优化的径向基函数(RBF)神经网络和K最近邻非参数回归(KNN)算法为基础,提出1种基于动态权重的行程时间组合预测模型.该组合预测模型的融合权重依据定义的动态误差的变化而持续调整,以保证子模型中精度较高的预测结果对最终结果有较大影响,从而提高预测精度.选取京港澳高速公路湖北省境内军山-武汉南路段,分析该路段降雨条件下行程时间特性,掌握其不同时段和不同降雨强度下行程时间变化规律,并进行预测.结果表明,组合预测模型能有效预测行程时间高峰变化,反应及时且预测精度较高,达到0 .98 ,平均绝对百分误差1 .99% ;而单一的RBF神经网络和KNN算法的平均绝对百分误差分别为3 .40% 和2 .60% ,且拟合程度不如组合预测模型. 相似文献
3.
4.
随着智能运输系统的广泛应用,实时交通流量预测的重要性也日益显著。本文介绍了预测模型发展过程中比较重要的几个模型,并由此引出人工神经网络。介绍误差逆传播(BP)模型的相关理论。指出传统BP神经网络的缺陷,并提出提高预测精度的措施引进高阶神经网络。建立普通BP神经网络的预测模型,利用误差反传播算法实现这些影响因素到输出变量的复杂映射,再用高阶神经网络构建另一预测模型。利用交叉口实测数据进行预测,并用实际数据进行比较验证。 相似文献
5.
为了充分挖掘快速路交通流时空特性,解决当前城市快速路交通流预测存在交通流时空特性挖掘不充分等问题,进一步提高城市快速路短时交通流的预测精度与效率,研究了基于有向图卷积神经网络和门控循环单元的组合模型(directed graph convolution network-gate recurrent unit,DGC-GRU)的城市快速路短时交通流预测方法。该方法提出空间相关性矩阵并将其引入图卷积神经网络中,构建有向图卷积神经网络用于表征交通流的有向性和流动性。将交通流参数输入有向图卷积神经网络后得到有向图卷积算子,并将有向图卷积算子引入门控循环单元,通过有向图卷积神经网络捕捉交通流的空间特性,通过门控循环单元捕捉交通流的时间特性,输出快速路交通流预测结果。选取西雅图环形快速路感应器检测数据进行实例分析,对比模型预测效果。结果表明:在数据集与参数设置均相同的情况下,DGC-GRU交通流预测模型的训练收敛速度更快,且平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)均优于对比模型,与传统的GRU、GCN、DGC-LSTM模型相比,DGC-GRU模型能够将MAE和MAPE指数分别降低33.01%、5.76%、1.32%和27.75%、1.15%、7.76%,表明DGC-GRU交通流预测模型能够有效挖掘城市快速路网中的交通流时空分布特征,具有良好的预测精度与效率。 相似文献
6.
7.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型. 相似文献
8.
为进一步提高交通流预测的精确性,相较于忽略噪声影响的传统预测方法,提出一种基于小波变换的双向长短时记忆神经网络-自回归滑动平均模型的预测模型(WBLA)。WBLA模型首先采用小波变换,将交通流数据分解为特征项及噪声项,在此基础上,对特征项采用双向长短时记忆神经网络(BiLSTM)进行预测,对噪声项采用自回归滑动平均模型(ARMA)进行预测,最后对两项预测结果求和作为最终的预测结果。将未考虑噪声影响的其它基准方法作为对比模型,在美国加州高速公路交通流数据集上进行测试及验证,实验结果表明:WBLA模型同未考虑噪声影响的次好模型相比,MAE、RMSE和MAPE分别下降17.86%、15.98%、16.39%,表明WBLA模型符合实际交通流速度变化趋势,模型合理性得到验证。 相似文献
9.
目前,高速公路交通管控部门对准确交通数据的掌握还存在局限性,预测值也不够精确,为给出行者提供更好的交通引导,必须采用新方法预估误差较小的交通流量数据.提出一种同时考虑时间与空间因素的卷积-双向长短期记忆(CNN-BiLSTM)模型,将具有空间局部特征提取能力的卷积神经网络(CNN)和具有能同时考虑前后方向长时间信息的双向长短期记忆(BiLSTM)相结合,将其用于预测更能体现随时空变化不断波动的交通流量.以一些简单的基准方法作为对比模型,采用均方误差(MSE)等5项评估指标,在美国加州高速公路数据集上进行训练和测试,结果表明:由CNN-BiLSTM得出的预测结果更符合实际交通流量的变化趋势,在高峰期和波动较大时间段均能较好地拟合真实值,灵敏度较高. 相似文献
10.
交通拥堵预测是解决交通拥堵问题的重要步骤之一.为缓解交通拥堵,选取速度这一参数建立交通拥堵预测模型.在对速度时间相关性和空间相关性分析的基础上,提出了基于时空特性和径向基神经网络的速度预测多点模型.将预测结果与决策阈值相比较,粗略地判定拥堵等级,并运用模糊算法对速度和拥堵程度进行量化,建立相应的模糊规则体系,并应用模糊逻辑推理得到定量的拥堵度指标.结合实例进行仿真和分析,与基于单一时间序列的预测方法相比较,基于时空特性的预测方法的平均绝对相对误差由7.45%下降到了3.61%,有效地提高了速度预测精度,基于速度的拥堵预测模型的识别准确率较高.利用模糊算法评判拥堵程度,可得到量化的拥堵度指标,使拥堵程度一目了然. 相似文献