首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317篇
  免费   4篇
公路运输   346篇
综合类   36篇
水路运输   452篇
铁路运输   39篇
综合运输   448篇
  2022年   5篇
  2021年   10篇
  2020年   12篇
  2019年   8篇
  2018年   27篇
  2017年   26篇
  2016年   43篇
  2015年   16篇
  2014年   26篇
  2013年   215篇
  2012年   63篇
  2011年   66篇
  2010年   54篇
  2009年   55篇
  2008年   63篇
  2007年   47篇
  2006年   27篇
  2005年   29篇
  2004年   24篇
  2003年   26篇
  2002年   20篇
  2001年   28篇
  2000年   18篇
  1999年   22篇
  1998年   41篇
  1997年   18篇
  1996年   22篇
  1995年   22篇
  1994年   16篇
  1993年   18篇
  1992年   16篇
  1991年   13篇
  1990年   8篇
  1989年   14篇
  1988年   16篇
  1987年   15篇
  1986年   16篇
  1985年   11篇
  1984年   12篇
  1983年   8篇
  1982年   13篇
  1981年   12篇
  1980年   15篇
  1979年   16篇
  1978年   8篇
  1977年   12篇
  1976年   9篇
  1975年   17篇
  1974年   10篇
  1973年   9篇
排序方式: 共有1321条查询结果,搜索用时 484 毫秒
471.
472.
Tractor behaviour on sloping ground following a control loss due to rear wheel locking is examined. A mathematical model to predict the tractor trajectory is presented and the results obtained from this model are compared with those obtained from experiments with a remotely controlled tractor.

Reasonable agreement is reached between measured and predicted results - the discrepancies arise from limited tyre data or local random variations in slope, ground roughness or tyre/ground frictional values.

Within these limitations, the model is used to examine possible driver strategies following a control loss. Applying and maintaining full lock for this particular type of accident appears to improve safety; it certainly tends to avoid the worst situation in which the tractor accelerates backwards down the slope and reaches dangerously high speeds although inevitably it increases the likelihood of a low speed overturn.  相似文献   
473.
For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   
474.
ABSTRACT

With higher level of vehicle automation, it becomes increasingly important to know the maximum possible tyre forces during normal driving. An interesting method in this respect is estimating the tyre–road friction from the resonance peak in the wheel speed signal, excited by road roughness. A simulation environment using the MF-Swift tyre model is proposed, which gives insight in the correctness and functioning of this method. From implementing the estimation algorithm and considering the tyre torsional vibration system, it is concluded that frequencies and damping ratios can be estimated with reasonable accuracy and that the trends observed with changing road friction are consistent. Furthermore, the proposed simulation environment gives opportunity to investigate other issues like robustness of the estimation method to road roughness. Additionally, the tyre modelling aspect of the estimation method is analysed and improvements are proposed.  相似文献   
475.
Variations in track temperature, surface conditions and layout have led tyre manufacturers to produce a range of rubber compounds for race events. Each compound has unique friction and durability characteristics. Efficient tyre management over a full race distance is a crucial component of a competitive race strategy. A minimum lap time optimal control calculation and a thermodynamic tyre wear model are used to establish optimal tyre warming and tyre usage strategies. Lap time sensitivities demonstrate that relatively small changes in control strategy can lead to significant reductions in the associated wear metrics. The illustrated methodology shows how vehicle setup parameters can be optimised for minimum tyre usage.  相似文献   
476.
Increasing petroleum prices, increasing threat to the environment from exhaust emissions and global warming have generated intense international interest in developing renewable and alternative non-petroleum fuels for engines. Evolving feasible technology and recurring energy crisis necessitated a continued investigation into the search for sustainable and clean-burning renewable fuels. In this investigation, Honge oil methyl ester (HOME) was used in a four stroke, single cylinder diesel engine. Tests were carried out to study the effect of fuel injection timing, fuel injector opening pressure (IOP) and injector nozzle geometry on the performance and combustion of CI engine fuelled with HOME. Injection timing was varied from 19°bTDC (before top dead centre) to 27°bTDC in incremental steps of 4°bTDC; injector opening pressure was varied from 210 bar to 240 bar in steps of 10 bar. Nozzle injectors of 3, 4 and 5 holes, each of 0.2, 0.25 and 0.3 mm size were selected for the study. It was concluded that retarded injection timing of 19°bTDC, increased injector opening pressure of 230 bar and 4 hole nozzle injector of 0.2 mm size resulted in overall better engine performance with increased brake thermal efficiency (BTE) and reduced HC, CO, smoke emissions. Further air-fuel mixing was improved using swirl induced techniques which enhanced the engine performance as well.  相似文献   
477.
This paper demonstrates a new process that has been specifically designed for the support of the U.S. Department of Transportation’s (DOT’s) Corporate Average Fuel Economy (CAFE) standards. In developing the standards, DOT’s National Highway Traffic Safety Administration made use of the CAFE Compliance and Effects Modeling System (the “Volpe model” or the “CAFE model”), which was developed by DOT’s Volpe National Transportation Systems Center for the 2005–2007 CAFE rulemaking and has been continuously updated since. The model is the primary tool used by the agency to evaluate potential CAFE stringency levels by applying technologies incrementally to each manufacturer’s fleet until the requirements under consideration are met. The Volpe model relies on numerous technology-related and economic inputs, such as market forecasts, technology costs, and effectiveness estimates; these inputs are categorized by vehicle classification, technology synergies, phase-in rates, cost learning curve adjustments, and technology “decision trees”. Part of the model’s function is to estimate CAFE improvements that a given manufacturer could achieve by applying additional technology to specific vehicles in its product line. A significant number of inputs to the Volpe decision-tree model are related to the effectiveness (fuel consumption reduction) of each fuel-saving technology. Argonne National Laboratory has developed a fullvehicle simulation tool named Autonomie, which has become one of the industry’s standard tools for analyzing vehicle energy consumption and technology effectiveness. Full-vehicle simulation tools use physics-based mathematical equations, engineering characteristics (e.g., engine maps, transmission shift points, and hybrid vehicle control strategies), and explicit drive cycles to predict the effectiveness of individual and combined fuel-saving technologies. The Large-Scale Simulation Process accelerates and facilitates the assessment of individual technological impacts on vehicle fuel economy. This paper will show how Argonne efficiently simulates hundreds of thousands of vehicles to model anticipated future vehicle technologies.  相似文献   
478.
The majority of comparisons between state transportation systems do not control for characteristics that may vary greatly between states (e.g., vehicle miles traveled). A shortcoming of such analyses is that a state’s individual characteristics can be highly influential in determining how transportation policy is set and funds are spent. The purpose of this paper is to extend previous efforts to create groups of similar peer states by developing a new methodological framework that incorporates demographic, temporal, and locational variability into the peer group delineations. We collected historical data for 42 variables on transportation infrastructure, population, economy, growth, topography and weather. To examine trends before and after the passage of ISTEA we gathered data over two time periods: 1985 through 1990 and 1995 through 2000. Using principal components analysis (PCA) we reduced variables into seven components, and then statistically clustered states into peer groups for each time period based on the components and the remaining variables. We identified a range of cluster solutions and demonstrate how cluster statistics help to describe the contextual basis behind the peer grouping. The results of this study are to provide government agencies, researchers and the public with a systematic methodological framework for identifying peer states that reflect similar attributes contributing to the development and maintenance of state transportation systems.
Debbie A. Niemeier (Corresponding author)Email:
  相似文献   
479.
In this paper, we develop a novel severe weather-modeling paradigm to be applied within the context of a large-scale Airspace Planning and collaborative decision-making model in order to reroute flights with respect to a specified probability threshold of encountering severe weather, subject to collision safety, airline equity, and sector workload considerations. This approach serves as an alternative to the current practice adopted by the Federal Aviation Administration (FAA) of adjusting flight routes in accordance with the guidelines specified in the National Playbook. Our innovative contributions in this paper include (a) the concept of “Probability-Nets” and the development of discretized representations of various weather phenomena that affect aviation operations; (b) the integration of readily accessible severe weather probabilities from existing weather forecast data provided by the National Weather Service; (c) the generation of flight plans that circumvent severe weather phenomena with specified probability threshold levels, and (d) a probabilistic delay assessment methodology for evaluating planned flight routes that might encounter potentially disruptive weather along its trajectory. Additionally, we conduct an economic benefit analysis using a k-means clustering mechanism in concert with our delay assessment methodology in order to evaluate delay costs and system disruptions associated with variations in probability-net refinement-based information. Computational results and insights are presented based on flight test cases derived from the Enhanced Traffic Management System data provided by the FAA and using weather scenarios derived from the Model Output Statistics forecast data provided by the National Weather Service.  相似文献   
480.
Antilock brake system (ABS) has been designed to achieve maximum negative acceleration by preventing the wheels from locking. Research shows that the friction between road and tire is a nonlinear function of wheel slip. Therefore, maximum negative acceleration can be achieved by designing a suitable control system for wheel slip regulation at its optimum value. Since there is a lot of nonlinearity and uncertainty (uncertainty in mass and center of gravity of the vehicle and road condition) in vehicle dynamics, a robust control method should be used. In this research, a sliding mode controller for wheel slip control has been designed based on a two-axle vehicle model. Important considered parameters for vehicle dynamic include two separated brake torques for front and rear wheels as well as longitudinal weight transfer caused by the acceleration or deceleration. One of the common problems in sliding mode control is chattering phenomenon. In this paper, primary controller design has been improved using integral switching surface to reduce chattering effects. Simulation results show the success of integral switching surface in elimination of chattering side effects and by high performance of this controller. At the end, the performance of the designed controller has been compared with three of the prevalent papers results to determine the performance of sliding mode control integrated with integral switching surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号