首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1255篇
  免费   13篇
公路运输   530篇
综合类   42篇
水路运输   375篇
铁路运输   36篇
综合运输   285篇
  2023年   10篇
  2022年   21篇
  2021年   10篇
  2020年   14篇
  2019年   8篇
  2018年   69篇
  2017年   38篇
  2016年   58篇
  2015年   17篇
  2014年   53篇
  2013年   168篇
  2012年   64篇
  2011年   86篇
  2010年   68篇
  2009年   83篇
  2008年   76篇
  2007年   28篇
  2006年   15篇
  2005年   21篇
  2004年   20篇
  2003年   11篇
  2002年   15篇
  2001年   9篇
  2000年   18篇
  1999年   11篇
  1998年   24篇
  1997年   15篇
  1996年   20篇
  1995年   18篇
  1994年   6篇
  1993年   7篇
  1992年   13篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   5篇
  1987年   10篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   13篇
  1982年   7篇
  1981年   12篇
  1980年   8篇
  1979年   15篇
  1977年   16篇
  1976年   11篇
  1975年   10篇
  1974年   8篇
  1973年   5篇
排序方式: 共有1268条查询结果,搜索用时 140 毫秒
121.
Kim  Yeonbae  Kim  Tai-Yoo  Heo  Eunnyeong 《Transportation》2003,30(3):351-365
In this paper, we estimate a multinomial probit model of work trip mode choice in Seoul, Korea, using the Bayesian approach with Gibbs sampling. This method constructs a Markov chain Gibbs sampler that can be used to draw directly from the exact posterior distribution and perform finite sample likelihood inference. We estimate direct and cross-elasticities with respect to travel cost and the value of time. Our results show that travel demands are more sensitive to travel time than travel cost. The cross-elasticity results show that the bus has a greater substitute relation to the subway than the auto (and vice versa) and that an increase in the cost of an auto will increase the demand for bus transport more so than that of the subway.  相似文献   
122.
The background and the literature in liner fleet scheduling is reviewed and the objectives and assumptions of our approach are explained. We develop a detailed and realistic model for the estimation of the operating costs of liner ships on various routes, and present a linear programming formulation for the liner fleet deployment problem. Independent approaches for fixing both the service frequencies in the different routes and the speeds of the ships, are presented.  相似文献   
123.
The first part of this paper presented the required statistics and stochastic models for reliability analysis of the fatigue fracture of welded plate joints. This present Part 2 suggests a probabilistic damage tolerance supplement to the design SN curves for welded joints. The goal is to provide the practising engineer with simple tools that predict the reliability against fatigue fracture during service life. The impact of the chosen fatigue design factors (FDF) and the uncertainty in the applied stresses is revealed. The effect of an in-service inspection programme is also predicted. The results are presented as dimensionless matrices and suggested for use in support of decision-making at the design stage, without any advanced fracture mechanics modelling and stochastic simulation. One important advantage of this format is that the probability levels are presented regardless of actual weld class and target service life (TSL). This is obtained by introducing the FDF as a key parameter to the results. This parameter is defined as the ratio of predicted fatigue life over TSL. FDF is always calculated in the SN approach which is mandatory in fatigue life prediction. Various welded details (classes) will have the same reliability level for the same FDF. This is true at the end of TSL and at earlier stages, i.e. fractions of TSL. The absolute value of TSL is immaterial for a given FDF. In the case of in-service inspection, the inspection interval is also given without dimensions as a fraction of TSL.

Only the influence of future scheduled inspections is treated. Updating based on actual inspection results is not included as the scope of work is inspection planning at the design stage. Results for some frequent cases occurring in practice are readily derived and presented.  相似文献   

124.
This paper presents a fatigue design method for plug and ring type gas welded joints, which incorporates welding residual stress effects. A non-linear finite element analysis (FEA) was first performed to simulate the gas welding process. The numerically predicted residual stresses of the gas welds were then compared to experimental results measured using a hole drilling method. In order to evaluate the fatigue strength of the plug and ring type gas welded joints, a stress amplitude (σ a ) R taling the welding residual stress of the gas weld into account was introduced and is based on a modified Goodman equation incorporating the effect of the residual stress. Using the stress amplitude (σ a ) R , the ΔP-N f relations obtained from fatigue tests for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged into (σ a ) R -N f relations. It was found that the proposed stress amplitude (σ a ) R could provide a systematic and reasonable fatigue design criterion for the plug and ring type gas welded joints.  相似文献   
125.
Automotive general assembly requires many manual assembly operations to be carried out by human workers. Ergonomic analysis is an important part of the design and evaluation of products, jobs, tools, machines and environments for safe, comfortable and effective human functioning. Most recent researches have involved the evaluation of working conditions to prevent work-related musculoskeletal disorders. The majority of previous research on automotive companies has mainly considered the results of ergonomic analyses such as RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment) and OWAS (Ovako Working Posture Analysis System). Analysis of static posture including reachability, clearances for arm, hand and tool has also been used to evaluate working conditions. However, in addition to static posture analysis, a biomechanical analysis in dynamic conditions should also be conducted. There are no integrated frameworks or standard schema for ergonomic analysis using digital human models in digital environments. The purpose of this paper is to propose a new framework for the evaluation of working conditions by ergonomic and biomechanical analysis using digital models based on XML standard schema, including: products, processes, manufacturing resources and human workers. This paper presents the analysis results using the proposed framework for automotive general assembly operations. We propose a new framework for the evaluation of the assembly operations and their environments. Then we apply a digital human model to the dynamic simulation of general automotive assembly operations based on standard schemas in XML and PPRH (Product, Process, Resource and Human). Using PPRH information based on a standard XML schema to analyze the ergonomic and biomechanical results, the engineer can visualize, analyze and improve assembly operations and working environments in automotive general assembly shops using digital models.  相似文献   
126.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   
127.
The objective of this paper is to improve the performance estimation model of the internal flow field of a torque converter. Compared with performance experiment results, the converter based on the one-dimensional model does not satisfy the performance requirements demanded in practice. Therefore, we need to develop more predictable and reliable performance estimation models. In order to obtain shape information on three-dimensional blade geometry, a process of reverse engineering conducts a torque converter assembly, impeller, turbine and stator. In addition, a CFD simulation including mesh generation and post-processing was carried out to extract equivalent parameters from the internal flow field. The internal flow field can be explained by analyze the correlation between a performance estimation model and CFD analysis. The equivalent performance model adopts the variation of energy loss coefficients for a given operating condition according to the application of a changing energy loss coefficient by the least mean squares method. The estimated equivalent model improves the agreement in performance between experiments and the theoretical model. This model can reduce the error to within about 3 percent. Furthermore, this procedure for predicted performance achieves eminence in the estimation of the capacity factor.  相似文献   
128.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
129.
Optimized design for a MacPherson strut suspension with side load springs   总被引:1,自引:0,他引:1  
Undesired lateral force inevitably exists in a MacPherson suspension system, which is liable to damper rod’s side wear and promotes the damper’s inner friction decreasing the ride performance from the suspension system. Substituting a new side load spring with curved centerline for the conventional coil spring has been proven able to solve these problems and Multi-body Dynamics combining with Finite Elements Analysis may be an efficient method in optimizing its design. Therefore, taking a passenger car as example, a detailed multi-body dynamics model for the suspension system is built to simulate forces exerted on the damper and the minimization of its lateral component is selected as the design target for the spring. When the structure optimization of the side load spring is performed using FEA software ANSYS, its vertical and lateral elastic characteristics, supported by test data, are analyzed. After importing FEA results back to the suspension system, the dynamics simulation can be performed to validate the optimization result.  相似文献   
130.
This paper describes the development of an optimal design process for a steering column system and supporting system. A design guide is proposed at the initial concept stage of the development process to obtain sufficient stiffness of the steering system while reducing the idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, where vibration modes among the systems are separated by applying a vibration mode map at the initial stage of the design process. This study also provides design guidelines for an optimal dynamic damper system using a CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to the vehicle model to analyze the relation between the frequency and the sensitivity of the steering column system. This analysis methodology makes it possible to achieve target performance in the early design stage and reduction of damper tuning activity after the proto car test stage. Through the proposed steering column system development process, a lightweight vehicle with high stiffness is possible prior to the proto build stage. Furthermore, the improved process is expected to contribute to reducing the overall development period and the number of proto car tests necessary to achieve the desired steering system performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号