Although the improvement of well-being is often an implicitly-assumed goal of many, if not most, public policies, the study of subjective well-being (SWB) and travel has so far been confined to a relatively small segment of the travel behavior community. Accordingly, one main purpose of this paper is to introduce a larger share of the community to some fundamental SWB-related concepts and their application in transportation research, with the goal of attracting others to this rewarding area of study. At the same time, however, I also hope to offer some useful reflections to those already working in this field. After discussing some basic issues of terminology and measurement of SWB, I present from the literature four conceptual models relating travel and subjective well-being. Following one of those models, I review five ways in which travel can influence well-being. I conclude by examining some challenges associated with assessing the impacts of travel on well-being, as well as challenges associated with applying what we learn to policy.
Network pricing serves as an instrument for congestion management, however, agencies and planners often encounter problems of estimating appropriate toll prices. Tolls are commonly estimated for a single-point deterministic travel demand, which may lead to imperfect policy decisions due to inherent uncertainties in future travel demand. Previous research has addressed the issue of demand uncertainty in the pricing context, but the elastic nature of demand along with its uncertainty has not been explicitly considered. Similarly, interactions between elasticity and uncertainty of demand have not been characterized. This study addresses these gaps and proposes a framework to estimate nearest optimal first-best tolls under long-term stochasticity in elastic demand. We show first that the optimal tolls under the deterministic-elastic and stochastic-elastic demand cases coincide when cost and demand functions are linear, and the set of equilibrium paths is constant. These assumptions are restrictive, so three larger networks are considered numerically, and the subsequent pricing decisions are assessed. The results of the numerical experiments suggest that in many cases, optimal pricing decisions under the combined stochastic-elastic demand scenario resemble those when demand is known exactly. The applications in this study thus suggest that inclusion of demand elasticity offsets the need of considering future demand uncertainties for first-best congestion pricing frameworks. 相似文献
Subnetwork analysis is often used in traffic assignment problems to reduce the size of the network being analyzed, with a corresponding decrease in computation time. This is particularly important in network design, second-best pricing, or other bilevel problems in which many equilibrium runs must be solved as a subproblem to a master optimization program. A fixed trip table based on an equilibrium path flow solution is often used, but this ignores important attraction and diversion effects as drivers (globally) change routes in response to (local) subnetwork changes. This paper presents an approach for replacing a regional network with a smaller one, containing all of the subnetwork, and zones. Artificial arcs are created to represent “all paths” between each origin and subnetwork boundary node, under the assumption that the set of equilibrium routes does not change. The primary contribution of the paper is a procedure for estimating a cost function on these artificial arcs, using derivatives of the equilibrium travel times between the end nodes to create a Taylor series. A bush-based representation allows rapid calculation of these derivatives. Two methods for calculating these derivatives are presented, one based on network transformations and resembling techniques used in the analysis of resistive circuits, and another based on iterated solution of a nested set of linear equations. These methods are applied to two networks, one small and artificial, and the other a regional network representing the Austin, Texas metropolitan area. These demonstrations show substantial improvement in accuracy as compared to using a fixed table, and demonstrate the efficiency of the proposed approach. 相似文献