首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3239篇
  免费   21篇
公路运输   793篇
综合类   707篇
水路运输   1002篇
铁路运输   44篇
综合运输   714篇
  2023年   14篇
  2022年   37篇
  2021年   15篇
  2020年   8篇
  2019年   12篇
  2018年   366篇
  2017年   324篇
  2016年   312篇
  2015年   22篇
  2014年   87篇
  2013年   180篇
  2012年   147篇
  2011年   292篇
  2010年   288篇
  2009年   154篇
  2008年   249篇
  2007年   141篇
  2006年   28篇
  2005年   82篇
  2004年   62篇
  2003年   81篇
  2002年   41篇
  2001年   20篇
  2000年   22篇
  1999年   22篇
  1998年   12篇
  1997年   19篇
  1996年   15篇
  1995年   24篇
  1994年   11篇
  1993年   14篇
  1992年   7篇
  1991年   8篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   12篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1979年   9篇
  1977年   10篇
  1976年   11篇
  1975年   15篇
  1974年   5篇
  1973年   7篇
  1972年   3篇
排序方式: 共有3260条查询结果,搜索用时 187 毫秒
31.
In this paper, the nonlinear dynamic equations of motion of the three dimensional multibody tracked vehicle systems are developed, taking into consideration the degrees of freedom of the track chains. To avoid the solution of a system of differential and algebraic equations, the recursive kinematic equations of the vehicle are expressed in terms of the independent joint coordinates. In order to take advantage of sparse matrix algorithms, the independent differential equations of the three dimensional tracked vehicles are obtained using the velocity transformation method. The Newton-Euler equations of the vehicle components are defined and used to obtain a sparse matrix structure for the system dynamic equations which are represented in terms of a set of redundant coordinates and the joint forces. The acceleration solution obtained by solving this system of equations is used to define the independent joint accelerations. The use of the recursive equations eliminates the need of using the iterative Newton-Raphson algorithm currently used in the augmented multibody formulations. The numerical difficulties that result from the use of such augmented formulations in the dynamic simulations of complex tracked vehicles are demonstrated. In this investigation, the tracked vehicle system is assumed to consist of three kinematically decoupled subsystems. The first subsystem consists of the chassis, the rollers, the sprockets, and the idlers, while the second and third subsystems consist of the tracks which are modeled as closed kinematic chains that consist of rigid links connected by revolute joints. The singular configurations of the closed kinematic chains of the tracks are also avoided by using a penalty function approach that defines the constraint forces at selected secondary joints of the tracks. The kinematic relationships of the rollers, idlers, and sprockets are expressed in terms of the coordinates of the chassis and the independent joint degrees of freedom, while the kinematic equations of the track links of a track chain are expressed in terms of the coordinates of a selected base link on the chain as well as the independent joint degrees of freedom. Singularities of the transformations of the base bodies are avoided by using Euler parameters. The nonlinear three dimensional contact forces that describe the interaction between the vehicle components as well as the results of the numerical simulations are presented in the second part of this paper.  相似文献   
32.
An adaptive lateral preview driver model   总被引:1,自引:0,他引:1  
Successful modelling and simulation of driver behaviour is important for the current industrial thrust of computer-based vehicle development. The main contribution of this paper is the development of an adaptive lateral preview human driver model. This driver model template has a few parameters that can be adjusted to simulate steering actions of human drivers with different driving styles. In other words, this model template can be used in the design process of vehicles and active safety systems to assess their performance under average drivers as well as atypical drivers. We assume that the drivers, regardless of their style, have driven the vehicle long enough to establish an accurate internal model of the vehicle. The proposed driver model is developed using the adaptive predictive control (APC) framework. Three key features are included in the APC framework: use of preview information, internal model identification and weight adjustment to simulate different driving styles. The driver uses predicted vehicle information in a future window to determine the optimal steering action. A tunable parameter is defined to assign relative importance of lateral displacement and yaw error in the cost function to be optimized. The model is tuned to fit three representative drivers obtained from driving simulator data taken from 22 human drivers.  相似文献   
33.
Advanced modelling of rail vehicle dynamics requires realistic solutions of contact problems for wheels and rails that are able to describe contact singularities, encountered for wheels and rails. The basic singularities demonstrate themselves as double and multiple contact patches. The solutions of the contact problems have to be known practically in each step of the numerical integration of the differential equations of the model. The existing fast, approximate methods of solution to achieve this goal have been outlined. One way to do this is to replace a multi-point contact by a set of ellipses. The other methods are based on so-called virtual penetration. They allow calculating the non-elliptical, multiple contact patches and creep forces online, during integration of the model. This allows nearly real-time simulations. The methods are valid and applicable for so-called quasi-Hertzian cases, when the contact conditions do not deviate much from the assumptions of the Hertz theory. It is believed that it is worthwhile to use them in other cases too.  相似文献   
34.
With the development of vehicle gearbox to high-power-density and high-speed, how to predict and optimize the dynamic characteristics of vehicle gearbox becomes increasingly prominent. Aiming at the vehicle gearbox, this paper comprehensively and deeply studies the dynamic characteristics under the multi-boundary conditions. The generation mechanism of the multi-source excitations triggering the gearbox vibration is analyzed firstly. The vibration transfer path of the gearbox is explored. Secondly, the engine excitation, the gear meshing excitation and the bearing support load are numerically calculated. According to the finite element method, a fluid-solid coupling finite element model of the gearbox body is established to predict the gearbox dynamic responses based on the Galerkin method and the Hamiltonian variational principle. Finally, the effects of the excitation condition, oil height and reinforcement forms on the vibration responses of the gearbox body are thoroughly studied by simulation. The analysis indicates that it not only helps to modify and improve the method of forecasting the gearbox dynamic response, and also provides the theoretical and technical guidance for the gearbox design and optimization.  相似文献   
35.
The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets (IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality. Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution (TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.  相似文献   
36.
This study estimates a random parameter (mixed) logit model for active transportation (walk and bicycle) choices for work trips in the New York City (using 2010–2011 Regional Household Travel Survey Data). We explored the effects of traffic safety, walk–bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk–bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the local authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Further, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists, will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The model would be an essential tool to estimate the impact of improving traffic safety and walk–bike infrastructure which will assist in investment decision making.  相似文献   
37.
The present paper presents a historical review associated with the research works on hull girder strength of ship and ship-shaped structures. Then, a new program is developed to determine the ultimate vertical bending moment of hull girder by applying direct method, stress distribution method, and progressive collapse analysis method. Six ships and ship-shaped structures used in the benchmark study of International Ship and Offshore Structures Congress (ISSC) in 2012 are adopted as examples. The calculation results by applying the developed program are analyzed and compared with the existing results. Finally, the roles of the developed program and its further development are discussed.  相似文献   
38.
39.
The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.  相似文献   
40.
Project portfolio management (PPM) is the centralized management method, process and technology in multiple projects. When multiple projects in the space industry are implemented, it provides an effective methodology to resolve the problems at the same time such as conflicts among models, decrease in design efficiency, and increase in target deviation. Hence, a PPM dedicated to multiple projects management in space enterprise is presented in this paper. Firstly, an analysis of features and contents in space enterprise portfolio management mode is performed by using PPM based on its specific strategic characteristics. Then, the principle and selection methods of PPM are provided as a reference for the future development of an enterprise. Finally, a multiple-level organization architecture including decision making layers, function management layers and project execution layers is proposed so as to adapt to possible changes in the multiple projects and correspond to the strategic development. As a consequence, a perfect matching mechanism to fit the changes in PPM modes is reached. In addition, the flow chart of PPM is designed and optimized by analyzing the implementation procedure of strategic target and project portfolio life-cycle, which is expected to realize the purpose of improving space enterprise management efficiency, project management capacity, innovation development and economic benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号