This article reports on a field investigation into the ways that transportation agencies use quantitative and qualitative information for making strategic decisions regarding airport ground access. The study analyzes the value of this information for planning airport ground access improvements at seven major international airport sites.The major finding of the research is that quantitative modeling for strategic decision support is very difficult, costly and time consuming. Modelers are confident that the models are accurate and reliable but executives generally lack confidence in the results. Transportation officials believe that the information supplied is flawed by a number of defects that minimize its value for strategic decision makers. The information defects described in this article provide an analysis of the structural difficulty of using quantitative modeling for transportation problems of strategic importance. To date, qualitative information is not frequently used, but some transportation agencies are considering its application to designing transportation services. Although this study is limited to airport ground access, the authors feel that this evidence, in conjunction with the evidence from other studies in the transportation area, dictates a need for wariness in the development of decision support systems for transportation planners. Developers of decision support systems for transportation planners must be aware of modeling costs and defects and consider how to improve the timeliness, relevance and credibility of information quantitative models provide transportation executives. Fundamentally it is important to recognize that decision makers tend, either singularly or in concert with other individuals or groups, to be the champions of a long-term vision for the community. When modeling produces inconsistent or wide ranging results that contradict their position, decision makers may not only discard modeling activities, but lose confidence in the models altogether. As a consequence, transportation planners are faced with the challenge of how to improve quantitative modeling. The most reliable and effective means for improvement is incorporation of qualitative techniques which provide greater understanding of customer perceptions and human behavior. 相似文献
This paper presents a modified lateral control method for an autonomous vehicle with both look-ahead and look-down sensing
systems. To cope with sensor noise and modeling uncertainty in the lateral control of the vehicle, a modified LMI-based H
lateral controller was proposed, which uses the look-ahead information of the lateral offset error measured at the front of
vehicle and the look-down information of the vehicle yaw angle error between the reference lane and the centerline of the
vehicle. To verify the safety and the performance of the lateral control, a scaled-down vehicle was developed, and the positioning
of the vehicle was estimated with USAT. The proposed controller, which uses both look-ahead and look-down information, was
tested for lane changing and reference lane tracking with both simulation and experiment. The simulation and experimental
results show that the proposed controller has better tracking and handling performance compared with a controller that uses
only the look-ahead information of the target heading angle error. 相似文献
Disruptions and random supplies have been important sources of uncertainty that should be considered in the design and control of supply chains. There have been many real world examples in which a single catastrophic event has simultaneously degraded the capabilities of several suppliers leading to considerable erosion of profits and goodwill for a company. However, the literature on analytical models that account for the dependence nature of disruptions and its impact on supply chain performance is sparse.In this paper, we consider an m-manufacturer, 1-retailer, newsvendor inventory system with stochastically dependent manufacturing capacities, caused by random disruptions that may simultaneously inflict damages to the capacities of the manufacturers. We develop the structural/analytical properties of key performance measures and optimal inventory policies for the multi-source and assembly inventory systems. We show that stochastic dependence in disruptions can have opposite effects on system performance in the multi-source and assembly systems. While risk diversification is preferred in the multi-source system, risk concentration is preferred in the assembly system. Our results also suggest that, if the retailer ignores the effect of dependent disruptions, then in the multi-source structure, it would underestimate the cost, overestimate the fill rate, and order more units than the optimum; however, in the assembly structure, the opposite would happen. We perform a comprehensive numerical study to validate our analytical results and generate useful managerial and operational insights for effective risk management of supply chains in the presence of dependent supply uncertainty. 相似文献
This paper proposes a frequency-based assignment model that considers travellers probability of finding a seat in their perception of route cost and hence also their route choice. The model introduces a “fail-to-sit” probability at boarding points with travel costs based on the likelihood of travelling seated or standing. Priority rules are considered; in particular it is assumed that standing on-board passengers will occupy any available seats of alighting passengers before newly boarding passengers can fill any remaining seats. At the boarding point passengers are assumed to mingle, meaning that FIFO is not observed, as is the case for many crowded bus and metro stops, particularly in European countries. The route choice considers the common lines problem and an user equilibrium solution is sought through a Markov type network loading process and the method of successive averages. The model is first illustrated with a small example network before being applied to the inner zone of London’s underground network. The effect of different values passengers might attach to finding a seat are illustrated. Applications of the model for transit planning as well as for information provision at the journey planner stage are discussed. 相似文献
Few studies have adequately assessed the cost of transfers2 in public transport systems, or provided useful guidance on transfer improvements, such as where to invest (which facility), how to invest (which aspect), and how much to invest (quantitative justification of the investment). This paper proposes a new method based on path choice,3 taking into account both the operator’s service supply and the customers’ subjective perceptions to assess transfer cost and to identify ways to reduce it. This method evaluates different transfer components (e.g., transfer walking, waiting, and penalty) with distinct policy solutions and differentiates between transfer stations and movements.The method is applied to one of the largest and most complex public transport systems in the world, the London Underground (LUL), with a focus on 17 major transfer stations and 303 transfer movements. This study confirms that transfers pose a significant cost to LUL, and that cost is distributed unevenly across stations and across platforms at a station. Transfer stations are perceived very differently by passengers in terms of their overall cost and composition. The case study suggests that a better understanding of transfer behavior and improvements to the transfer experience could significantly benefit public transport systems. 相似文献
Some agent-based models have been developed to estimate the spread progression of coronavirus disease 2019 (COVID-19) and to evaluate strategies aimed to control the outbreak of the infectious disease. Nonetheless, COVID-19 parameter estimation methods are limited to observational epidemiologic studies which are essentially aggregated models. We propose a mathematical structure to determine parameters of agent-based models accounting for the mutual effects of parameters. We then use the agent-based model to assess the extent to which different control strategies can intervene the transmission of COVID-19. Easing social distancing restrictions, opening businesses, speed of enforcing control strategies, quarantining family members of isolated cases on the disease progression and encouraging the use of facemask are the strategies assessed in this study. We estimate the social distancing compliance level in Sydney greater metropolitan area and then elaborate the consequences of moderating the compliance level in the disease suppression. We also show that social distancing and facemask usage are complementary and discuss their interactive effects in detail.
Advanced modelling of rail vehicle dynamics requires realistic solutions of contact problems for wheels and rails that are able to describe contact singularities, encountered for wheels and rails. The basic singularities demonstrate themselves as double and multiple contact patches. The solutions of the contact problems have to be known practically in each step of the numerical integration of the differential equations of the model. The existing fast, approximate methods of solution to achieve this goal have been outlined. One way to do this is to replace a multi-point contact by a set of ellipses. The other methods are based on so-called virtual penetration. They allow calculating the non-elliptical, multiple contact patches and creep forces online, during integration of the model. This allows nearly real-time simulations. The methods are valid and applicable for so-called quasi-Hertzian cases, when the contact conditions do not deviate much from the assumptions of the Hertz theory. It is believed that it is worthwhile to use them in other cases too. 相似文献