首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4513篇
  免费   29篇
公路运输   1150篇
综合类   752篇
水路运输   1429篇
铁路运输   92篇
综合运输   1119篇
  2023年   23篇
  2022年   59篇
  2021年   25篇
  2020年   18篇
  2019年   23篇
  2018年   406篇
  2017年   345篇
  2016年   351篇
  2015年   32篇
  2014年   122篇
  2013年   403篇
  2012年   197篇
  2011年   338篇
  2010年   334篇
  2009年   177篇
  2008年   299篇
  2007年   178篇
  2006年   54篇
  2005年   112篇
  2004年   85篇
  2003年   101篇
  2002年   56篇
  2001年   41篇
  2000年   52篇
  1999年   36篇
  1998年   34篇
  1997年   45篇
  1996年   41篇
  1995年   57篇
  1994年   28篇
  1993年   31篇
  1992年   19篇
  1991年   18篇
  1990年   16篇
  1989年   15篇
  1988年   19篇
  1987年   20篇
  1986年   18篇
  1985年   26篇
  1984年   25篇
  1983年   25篇
  1982年   26篇
  1981年   37篇
  1980年   25篇
  1979年   39篇
  1978年   14篇
  1977年   27篇
  1976年   18篇
  1975年   23篇
  1974年   13篇
排序方式: 共有4542条查询结果,搜索用时 0 毫秒
21.
Storage space allocation in container terminals   总被引:7,自引:0,他引:7  
Container terminals are essential intermodal interfaces in the global transportation network. Efficient container handling at terminals is important in reducing transportation costs and keeping shipping schedules. In this paper, we study the storage space allocation problem in the storage yards of terminals. This problem is related to all the resources in terminal operations, including quay cranes, yard cranes, storage space, and internal trucks. We solve the problem using a rolling-horizon approach. For each planning horizon, the problem is decomposed into two levels and each level is formulated as a mathematical programming model. At the first level, the total number of containers to be placed in each storage block in each time period of the planning horizon is set to balance two types of workloads among blocks. The second level determines the number of containers associated with each vessel that constitutes the total number of containers in each block in each period, in order to minimize the total distance to transport the containers between their storage blocks and the vessel berthing locations. Numerical runs show that with short computation time the method significantly reduces the workload imbalance in the yard, avoiding possible bottlenecks in terminal operations.  相似文献   
22.
Carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NO) emission factors (EFs) are measured with a commercial vehicle emissions remote sensing system (VERSS) during a large-scale vehicle exhaust emissions study in Las Vegas. Particulate matter (PM) EFs are simultaneously measured for individual vehicles with a newly developed PM-VERSS based on ultraviolet backscatter light detection and ranging (Lidar). The effectiveness of CO and HC EFs as proxy for NO and PM EFs for spark-ignition vehicles is evaluated. Poor correlations were found between EFs for pollutants on an individual vehicle basis indicating that high EFs for one or more pollutants cannot be used as a predictor of high EFs for other pollutants. Stronger functional relationships became evident after averaging the EF data in bins based on rank-order of a single pollutant EF. Low overlap between the highest 10% emitters for CO, HC, NO, and PM was found. These results imply that for an effective reduction of the four pollutants, inspection and maintenance (I/M) programs, including clean screening, should measure all four pollutants individually. Fleet average CO and HC concentrations determined by gaseous VERSS were compared with fleet average CO and HC concentrations measured at low-idle and at high-idle during local I/M tests for spark-ignition vehicles. The fleet average CO concentrations measured by I/M tests at either idle were about half of those measured by remote sensing. The fleet average high-idle HC concentration measured by I/M tests was about half of that measured by VERSS while low-idle I/M and VERSS HC average concentrations were in better agreement. For a typical vehicle trip, most of the fuel is burned during non-idle conditions. I/M measurements collected during idling conditions may not be a good indicator of a vehicle’s potential to be a high emitter. VERSS measurements, when the vehicle is under a load, should more effectively identify high emitting vehicles that have a large contribution to the mobile emissions inventory.  相似文献   
23.
24.
In this part of the paper, three dimensional computational capabilities, that includes significant details, are developed for the nonlinear dynamic analysis of large scale spatial tracked vehicles. Three dimensional nonlinear contact force models that describe the interaction between the track links and the vehicle components such as the rollers, sprockets, and idlers as well as the interaction between the track links and the ground are developed and used to define the generalized contact forces associated with the vehicle generalized coordinates. Tangential friction and contact forces are developed in order to maintain the stability of the track motion and avoid the slippage of the track or its rotation as a rigid body. Body and surface coordinate systems are introduced in order to define the spatial contact conditions. The nonlinear equations of motion of the tracked vehicle are solved using the velocity transformation procedure developed in the first part of this paper. This procedure is used in order to obtain a minimum set of differential equations, and avoid the use of the iterative Newton-Raphson algorithm. A computer simulation of a tracked vehicle that consists of one hundred and six bodies and has one hundred and sixteen degrees of freedom is presented in order to demonstrate the use of the formulations presented in this study.  相似文献   
25.
In this paper, the nonlinear dynamic equations of motion of the three dimensional multibody tracked vehicle systems are developed, taking into consideration the degrees of freedom of the track chains. To avoid the solution of a system of differential and algebraic equations, the recursive kinematic equations of the vehicle are expressed in terms of the independent joint coordinates. In order to take advantage of sparse matrix algorithms, the independent differential equations of the three dimensional tracked vehicles are obtained using the velocity transformation method. The Newton-Euler equations of the vehicle components are defined and used to obtain a sparse matrix structure for the system dynamic equations which are represented in terms of a set of redundant coordinates and the joint forces. The acceleration solution obtained by solving this system of equations is used to define the independent joint accelerations. The use of the recursive equations eliminates the need of using the iterative Newton-Raphson algorithm currently used in the augmented multibody formulations. The numerical difficulties that result from the use of such augmented formulations in the dynamic simulations of complex tracked vehicles are demonstrated. In this investigation, the tracked vehicle system is assumed to consist of three kinematically decoupled subsystems. The first subsystem consists of the chassis, the rollers, the sprockets, and the idlers, while the second and third subsystems consist of the tracks which are modeled as closed kinematic chains that consist of rigid links connected by revolute joints. The singular configurations of the closed kinematic chains of the tracks are also avoided by using a penalty function approach that defines the constraint forces at selected secondary joints of the tracks. The kinematic relationships of the rollers, idlers, and sprockets are expressed in terms of the coordinates of the chassis and the independent joint degrees of freedom, while the kinematic equations of the track links of a track chain are expressed in terms of the coordinates of a selected base link on the chain as well as the independent joint degrees of freedom. Singularities of the transformations of the base bodies are avoided by using Euler parameters. The nonlinear three dimensional contact forces that describe the interaction between the vehicle components as well as the results of the numerical simulations are presented in the second part of this paper.  相似文献   
26.
The magnetic field tuning characteristics of an ultrasonic motor (USM) stator are discussed. The stator consists of two piezoelectric ceramic transducer (PZT) plates and one sandwiched-in Terfenol-D plate. The dimensions of the stator are carefully adjusted to specifically discuss the influence of the magnetic field on the frequency difference between the longitudinal and bending modes of the stator. The frequency difference discussed in this paper is usually small and mainly caused by uneven materials, machining errors and changes in external conditions (temperature, pre-stress or load). The longitudinal and bending modes of the stator are simultaneously excited by an external electric field to generate the elliptic motion trajectories of the driving points. A direct current (DC) magnetic field is applied to decrease the difference between the two mode frequencies of the fabricated stator. In experiments, the dependences of the two mode frequencies and their difference on DC magnetic fields are all investigated. The experimental results indicate that the difference between the longitudinal and bending mode frequencies of the PZT/Terfenol-D/PZT composite stator can be tuned by changing the intensity of the external DC magnetic field.  相似文献   
27.
Traditional control methods of two-wheeled robot are usually model-based and require the robot’s precise mathematic model which is hard to get. A sensorimotor self-learning model named SMM TWR is presented in this paper to handle these problems. The model consists of seven elements: the discrete learning time set, the sensory state set, the motion set, the sensorimotor mapping, the state orientation unit, the learning mechanism and the model’s entropy. The learning mechanism for SMM TWR is designed based on the theory of operant conditioning (OC), and it adjusts the sensorimotor mapping at every learning step. This helps the robot to choose motions. The leaning direction of the mechanism is decided by the state orientation unit. Simulation results show that with the sensorimotor model designed, the robot is endowed the abilities of self-learning and self-organizing, and it can learn the skills to keep itself balance through interacting with the environment.  相似文献   
28.
Phased-mission systems (PMSs) have wide applications in engineering practices, such as manmade satellites. Certain critical parts in the system, such as cold standby, hot standby and functional standby, are designed in redundancy architecture to achieve high reliability performance. State-space models such as Markov process have been used extensively in previous studies for reliability evaluation of PMSs with dynamic behaviors. The most popular way to deal with the dynamic behaviors is Markov process, but it is well known that Markov process is limited to exponential distribution. In practice, however, the lifetime of most machinery products can follow non-exponential distributions like the Weibull distribution which cannot be handled by the Markov process. In order to solve this kind of problem, we present a semi-Markov model combined with an approximation algorithm to analyze PMS reliability subjected to non-exponential failures. Furthermore, the accuracy of the approximation algorithm is investigated by comparing to an accurate solution, and a typical PMS (attitude and orbit control system) is analyzed to demonstrate the implementation of the method.  相似文献   
29.
In recent years, electric vehicles are developing rapidly in automotive industry. When involved in accidents, if the batteries of electric cars break, it is likely to cause a short circuit and start a fire. Aimed at this issue, a car battery protection device based on torsion spring has been designed. The car battery protection device can deform in a particular pattern in a collision accident. Impact energy of the accident is absorbed by the deformation, which can significantly reduce impact force on the batteries. Meanwhile, based on the principle of maximum energy absorption, some crucial parameters of the device can be determined. Furthermore, an impact simulation conducted on ANSYS software shows that maximum safety factors can be obtained when the material of car battery protection device is carbon steel. The analysis of “safe space” in the car battery protection device shows that the device can prevent battery damage effectively in general circumstances, which means the reliability of the device has been verified. Therefore, when applied to electric vehicles, the car battery protection device, which can prevent secondary accidents, significantly improves the vehicle security in accidents.  相似文献   
30.
The rate equations and the power evolution equations based on excited state absorption (ESA) and cooperative upconversion (CUC) of high concentration erbium-doped yttrium aluminum garnet (YAG) transparent ceramic waveguide amplifier are set up to analyze the effects of the pump power, active ion concentration and waveguide length on the amplifier gain and noise figure (NF). The numerical analysis predicts that with a pump power of 100mW, an active ion concentration of 1.0×1026 ion/m3 and a waveguide length of 3 cm, a small-signal gain of 30 dB and an NF of 5 dB can be achieved in the micro-chip amplifier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号