首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1878篇
  免费   9篇
公路运输   664篇
综合类   56篇
水路运输   577篇
铁路运输   51篇
综合运输   539篇
  2023年   11篇
  2022年   36篇
  2021年   15篇
  2020年   11篇
  2019年   17篇
  2018年   60篇
  2017年   46篇
  2016年   73篇
  2015年   16篇
  2014年   76篇
  2013年   293篇
  2012年   96篇
  2011年   97篇
  2010年   91篇
  2009年   90篇
  2008年   97篇
  2007年   46篇
  2006年   36篇
  2005年   36篇
  2004年   28篇
  2003年   29篇
  2002年   23篇
  2001年   24篇
  2000年   34篇
  1999年   20篇
  1998年   29篇
  1997年   35篇
  1996年   31篇
  1995年   44篇
  1994年   20篇
  1993年   20篇
  1992年   14篇
  1991年   11篇
  1990年   14篇
  1989年   12篇
  1988年   15篇
  1987年   14篇
  1986年   11篇
  1985年   19篇
  1984年   17篇
  1983年   14篇
  1982年   22篇
  1981年   27篇
  1980年   18篇
  1979年   33篇
  1978年   12篇
  1977年   18篇
  1976年   8篇
  1975年   10篇
  1974年   8篇
排序方式: 共有1887条查询结果,搜索用时 31 毫秒
931.
In order to effectively solve modern automotive design problems including the results of nonlinear FEA and multi-body dynamics, a progressive meta-model based design optimization is presented. To reduce the number of initial sample points, two sampling methods are introduced. Then, for efficient and stable construction of meta-models, three metamodel methods are newly introduced which are numerically based on the singular value decomposition technique. To design a practical system considering manufacturing tolerances and optimizing multiple performances, a robust design optimization, 6-sigma constraints and multi-objective strategies are implemented when solving the approximate optimization problem constructed from the meta-models. Until the convergence criteria are satisfied, the initially developed meta-models are progressively improved by adding only one point that minimizes the approximate Lagrangian in the consecutive optimization iterations. Finally, one validation sample and four automotive applications are solved to show the effectiveness of the proposed approach.  相似文献   
932.
This paper presents a regenerative braking co-operative control algorithm to increase energy recovery without wheel lock. Considering the magnitude of the braking force available between the tire and road surface, the control algorithm was designed for the regenerative braking force at the front wheel and friction braking force at the rear wheel to be increased following the friction coefficient line. The performance of the proposed regenerative braking co-operative control algorithm was evaluated by the hardware in the loop simulation (HILS) with an electronic wedge brake on its front wheels and an electronic mechanical brake on its rear wheels. The HILS results showed that a proper braking force on the front and rear wheels on a low μ road prevented the lock of the front wheels that was connected to the motor, and maintained the regenerative braking and increased energy recovery.  相似文献   
933.
In this study, cooperative regenerative braking control of front-wheel-drive hybrid electric vehicle is proposed to recover optimal braking energy while guaranteeing the vehicle lateral stability. In front-wheel-drive hybrid electric vehicle, excessive regenerative braking for recuperation of the maximum braking energy can cause under-steer problem. This is due to the fact that the resultant lateral force on front tire saturates and starts to decrease. Therefore, cost function with constraints is newly defined to determine optimum distribution of brake torques including the regenerative brake torque for improving the braking energy recovery as well as the vehicle lateral stability. This cost function includes trade-off relation of two objectives. The physical meaning of first objective of cost function is to maximize the regenerative brake torque for improving the fuel economy and that of second objective is to increase the mechanical-friction brake torques at rear wheels rather than regenerative brake torque at front wheels for preventing front tire saturation. And weighting factor in cost function is also proposed as a function of under-steer index representing current state of the vehicle lateral motion in order to generalize the constrained optimization problem including both normal and severe cornering situation. For example, as the vehicle approaches its handling limits, adaptation of weighting factor is possible to prioritize front tire saturation over increasing the recuperation of braking energy for driver safety and vehicle lateral stability. Finally, computer simulation of closed loop driver-vehicle system based on Carsim? performed to verify the effectiveness of adaptation method in proposed controller and the vehicle performance of the proposed controller in comparison with the conventional controller for only considering the vehicle lateral stability. Simulation results indicate that the proposed controller improved the performance of braking energy recovery as well as guaranteed the vehicle lateral stability similar to the conventional controller.  相似文献   
934.
Collision accidents often occur during parking or reversing cars. In allusion to this point, this paper conducts a review of literatures on automatic parking. To begin with, a brief introduction of automatic parking including its background and significance is given. Then its commercial application, research status and latest progress are summarized which include visual perception, ultrasonic sensors and radar technology, path planning, control algorithms based on fuzzy theory, neural network, image processing and recognition technology, and digital signal processing technology, etc. On further analysis, some reasonable conclusions are drawn and the future work is suggested.  相似文献   
935.
The intake or exhaust noise of an internal combustion engine is usually predicted by the linear, time-invariant source model in frequency domain with reasonable precision. However, the actual finite amplitude pulsation involves the nonlinear, time-varying characteristics that are prominent in time-domain. To overcome the discrepancy between two source models, an approximate nonlinear and time-varying frequency domain source model can be employed by appending the nonlinear or time-varying terms to the linear, time-invariant source model. Proper selection of the nonlinear describing terms varying with time is important for the realistic and precise prediction of the radiated sound. For the selection of such terms, flow and motional characteristics in the valve and orifice of a simplified fluid machine comprised of very large reservoir, valve, and duct is considered. Effects of each describing term and the combined terms are investigated by comparing the sound spectrum predicted from nonlinear source model to that from linear source model. In the comparison, the sound spectrum calculated by the method of characteristics is used as a reference. It is found that the source model using only the velocityrelated terms yields the best result among all the models using various combinations of the terms with different characteristics. The best model yields a difference from the linear source model within ±5 dB in overall sound level. Change of acoustic loads results in a difference of 20–27 dB in linear source model from the reference data; however, maximum 10–22 dB deviations are observed in using the various nonlinear source models. It is concluded that more than 4 describing terms should be employed in the nonlinear model to obtain a realistic result of the radiated sound from the intake or exhaust system.  相似文献   
936.
A novel vehicle headlamp low beam system is presented. The optical system is composed of three identical cells to ensure enough illumination. A poly-ellipsoid reflector and a aspherical lens are used to concentrate the rays and a baffle is employed to produce the cut-off line. The optical performance shows a good agreement with the requirement for headlamp in Chinese national standard. The smart constant current driver sustains automotive headlamps?requirements, moreover it has high power efficiency. The performance of three kinds of cooling systems with different structures are simulated and evaluated by FloTHERM software. Then a loop heat pipes combined with fins cooling system is manufactured for cooling the designed LED headlamp. It can greatly improve the cooling efficiency. Even in the 80°C environmental temperature, it can meet the working requirements of LED headlamp low beam system, so it is a kind of feasible cooling scheme.  相似文献   
937.
An empirical analysis was performed in order to examine whether the height of the lumbar support installed on the driver’s seat in a vehicle makes a difference to the initial discomfort when sitting, and among the design variables of the seat lumbar support, which one is the main variable that affects the initial discomfort most when sitting. The subjects who participated in this study were 50th percentile male in their 30s and 40s from Korea and America, had driving experience, and had not experienced any back pain in the last 12 months. In order to figure out the level of discomfort felt by a driver depending on the movement or the shapes of the lumbar support, subjective sensibility evaluation was conducted and sitting body pressure was measured, and the change of lumbar spine angle was observed using X-ray image. Based on the results, design variables that affect the initial discomfort when sitting on a car seat and the correlation among these design variables were verified through statistical significance testing. The empirical analysis suggested that, among design variables of car seat lumbar support, the degree of prominence is the main variable that affects the initial discomfort when sitting for both Koreans and Americans, while the height and support width have very little to do with it.  相似文献   
938.
This paper investigates the optimal control of a vehicle, after a light impact during a traffic accident. To reduce the risk of secondary events, the control target is set: to minimize the maximum lateral deviation from the initial path. In previous analysis path control was achieved by the active control of individual wheel braking. The present paper examines potential benefits from the additional control of front steering angles. Numerical optimization is used to determine optimal control sequences for both actuator configurations. It is found that steering provides significant control benefits, though not for all post-impact kinematics. For all cases considered, the optimal control operates at the boundary of the control domain of available forces and moments. This domain is expanded when steering is available, and there exists an expanded range of conditions for which coupled control of yaw moments and lateral forces is the most effective control strategy. The sensitivity of vehicle response to the individual actuator controls is studied; it reveals this sensitivity is related to the actuator bandwidth and the lack of any dynamic cost in the longitudinal direction. This motivates a further analysis which includes longitudinal and lateral dynamics in the cost function. This is broadly related to real-world crash risks. Further, different versions of such cost functions are compared as a basis for implementation in a closed-loop controller.  相似文献   
939.
This paper presents a new active steering control system based on driving phase diagram (β fr ?δ f diagram). In order to make state variables to follow those of nominal vehicle model that was developed under no consideration of disturbance, Quadratic Programming Problem (QPP) is formulated, where time varying objective function minimizes the differences between nominal and actual parameters. The steering characteristic in active steering control system changes when the vehicle faces disturbance such as crosswind and flat tire, and driver tries to counteract it after recognizing the change. The proposed method defines a stability region on β fr ?δ f diagram. In order to make β fr and δ f remain in the stability region, a new model predictive controller is proposed. While conventional controllers are restrictive to satisfy the β fr ?δ f diagram based stability condition, the proposed controller ensures solution space and also plays a direct role to minimize the evaluation function in the constrained optimal control problem.  相似文献   
940.
Most of the tyre models have been developed for high speed, combined forces, etc., however, in certain tests it is necessary to know tyre behaviour at very low speed in order to evaluate different systems. So, during vehicle inspection and maintenance of the steering and brake system, by means of sideslip tester and roller brake tester respectively, the forces transmitted by the tyres are measured; all of these inspections are carried out at low speeds. Furthermore, usually, automobile vehicles run at low speeds during an important part of their operating life (less than 60 km/h), mainly during urban traffic, and in steady state conditions. Therefore, it is particularly interesting to develop an accurate model of the contact patch tyrepavement for low speeds without the complexity of models that cover a wide speed range but provide less precision at very low speeds. The dynamometer plate has proved to be an appropriate test equipment to characterise the tyre-pavement contact at low speed and the steering geometry and wheel alignment. It has the feature of being able to carry out tests with the tyre installed in the vehicle as in completely real conditions. The main aim of this research is to set up a contact model between tyre and pavement at very low speed based on the measurement of longitudinal and lateral forces. A test methodology that allows carrying out the experimental tests in a systematic and controlled way with the dynamometer plate has also been developed. From this model it will be possible to estimate the forces that tyres are capable of transmitting in different situations to act in the parameters which affect these forces and maximize them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号