首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2382篇
  免费   10篇
公路运输   894篇
综合类   63篇
水路运输   687篇
铁路运输   53篇
综合运输   695篇
  2023年   11篇
  2022年   36篇
  2021年   15篇
  2020年   11篇
  2019年   18篇
  2018年   93篇
  2017年   92篇
  2016年   171篇
  2015年   16篇
  2014年   76篇
  2013年   293篇
  2012年   130篇
  2011年   186篇
  2010年   174篇
  2009年   107篇
  2008年   148篇
  2007年   76篇
  2006年   38篇
  2005年   38篇
  2004年   38篇
  2003年   31篇
  2002年   27篇
  2001年   25篇
  2000年   35篇
  1999年   20篇
  1998年   29篇
  1997年   35篇
  1996年   31篇
  1995年   44篇
  1994年   20篇
  1993年   21篇
  1992年   14篇
  1991年   11篇
  1990年   14篇
  1989年   12篇
  1988年   15篇
  1987年   14篇
  1986年   11篇
  1985年   19篇
  1984年   17篇
  1983年   14篇
  1982年   22篇
  1981年   27篇
  1980年   18篇
  1979年   33篇
  1978年   12篇
  1977年   18篇
  1976年   8篇
  1975年   10篇
  1974年   8篇
排序方式: 共有2392条查询结果,搜索用时 15 毫秒
911.
Hybrids combine a combustion engine with an electric motor and battery. The two technologies can be combined to reduce fuel consumption and exhaust emissions. This paper presents the concept of hybrid electric vehicles (HEVs) applied to truck or van vehicles with diesel engines. The simulation results from the advanced vehicle simulator (ADVISOR) demonstrate that the required power may be properly shared between the internal combustion engine and electric motor. The simulation can also be used to prove that the technique is useful for improvements in driving performance; additionally, the technique is suitable for hybrid electric vehicles, allowing for good fuel economy and low emissions performance.  相似文献   
912.
Hierarchical control is a new control framework in the vehicle vibration control field. In this paper, a hierarchical modeling method is presented to form a different motorcycle model, compared to the traditional model with six degrees of freedoms (DOF), so as to construct hierarchical modeling control. The whole control framework is composed of a central control, two local controls and two uncontrollable parts. The front and rear wheel systems of a motorcycle are all dealt with by using two independent local 2-DOF systems. The driver and engine act as uncontrollable passive parts. The central control is composed of an algorithm made up of some dynamic equations that harmonize local relations. The vertical and pitch accelerations of the suspension center are treated as central control objects. With the help of Linear Quadratic Gaussian (LQG) algorithms adopted by two local controls, respectively, and Matlab software, some results of the simulation show that hierarchical modeling control requires less CPU time, reduces respond time and improves ride quality.  相似文献   
913.
The diesel combustion process is highly dependent on fuel injection parameters, and understanding fuel spray development is essential for proper control of the process. One of the critical factors for controlling the rate of mixing of fuel and air is the number of injector holes in a diesel engine. This study was intended to explore the behavior of the formation of spray mixtures, combustion, and emissions as a function of the number of injector hole changes; from this work, we propose an optimal number of holes for superior emissions and engine performance in diesel engine applications. The results show that increasing the number of holes significantly influences evaporation, atomization, and combustion. However, when the number of holes exceeds a certain threshold, there is an adverse effect on combustion and emissions due to a lack of the air entrainment required for the achievement of a stoichiometric mixture.  相似文献   
914.
This paper describes an optimum distribution method for yaw moment for use with unified chassis control (UCC) with limitations on the active front steering (AFS) angle. Although the UCC has been assumed to have no AFS angle limitation in the literature, a physical limitation exists in real applications. To improve upon the previous method, a new optimum distribution method for yaw moment is proposed that takes this limitation into account. This method derives an optimum longitudinal/lateral force using the Karush-Kuhn-Tucker (KKT) optimality condition, and a simulation is performed to validate the proposed method. The simulation results indicate that the limitation on the AFS angle increases longitudinal braking force and, therefore, reduces the vehicle speed and the side-slip angle.  相似文献   
915.
Active coolant control strategies in automotive engines   总被引:1,自引:0,他引:1  
The coolant flow rate in conventional cooling systems in automotive engines is subject to the mechanical water pump speed, and high efficiency in terms of fuel economy and exhaust emission is not possible given this limitation. A new technology must be developed for engine cooling systems. The electronic water pump is used as a substitute for the mechanical water pump in new engine cooling systems. The new cooling system provides more flexible control of the coolant flow rate and engine temperature, which previously relied strongly on engine driving conditions such as load and speed. In this study, the feasibility of two new cooling strategies was investigated using a simulation model that was validated with temperatures measured in a diesel engine. Results revealed that active coolant control using an electronic water pump and valves substantially contributed to a reduction of coolant warm-up time during cold engine starts. Harmful emissions and fuel consumption are expected to decrease as a result of a reduction in warm-up time.  相似文献   
916.
A µ-synthesis for four-wheel steering (4WS) problems is proposed. Applying this method, model uncertainties can be taken into consideration, and a µ-synthesis robust controller is designed with optimized weighting functions to attenuate the external disturbances. In addition, an optimal controller is designed using the well-known optimal control theory. Two different versions of control laws are considered here. In evaluations of vehicle performance with the robust controller, the proposed controller performs adequately with different maneuvers (i.e., J-turn and Fishhook) and on different road conditions (i.e., icy, wet, and dry). The numerical simulation shows that the designed µ-synthesis robust controller can improve the performance of a closed-loop 4WS vehicle, and this controller has good maneuverability, sufficiently robust stability, and good performance robustness against serious disturbances.  相似文献   
917.
Driving simulators are useful tools that can be used not only to test the components of future cars, but also to evaluate the telematics service and HMI (Human-Machine Interface). However, driving simulators that are currently available cannot be implemented to test and evaluate a real commercial telematics service system because the GPS (Global Positioning System), which contains basic functional support for the telematics module, does not work in the VR (virtual reality) environment. A driving simulator, together with the GPS simulator, can be used to study the HMI to evaluate commercial CNS (Car Navigation Systems). In this paper, Sungkyunkwan University Driving Simulator (SKUD) is developed with a GPS simulator that is able to emulate GPS satellite signals and includes the NMEA-0183 protocol and RS232C communication standards. Furthermore, using the SKUD, the HMI of the real commercial CNS could be investigated with driver workload assessment methods.  相似文献   
918.
License plate location is a challenging task that is necessary for automatic vehicle identification. This paper presents a new method for locating a license plate when its size and aspect ratio are highly variable. The proposed method begins with an assumption that a license plate exists in a region where dense edges are located. We define an edge region as an area containing rich edges. The edge regions are created by dilating vertical edges, and they are classified into one of four types: left fragment type, right fragment type, whole type, and undefined type. The candidates for a license plate region are constructed by merging edge regions. Knowing what type of edge region is being examined is useful in the merging process. Finally, we verify whether each candidate contains a license plate or not by using the character arrangement information. The arrangement pattern is determined by the size of connected components and by the vertical overlap or horizontal distance between two neighboring components. Experimental results show that the proposed method gives robust results regardless of any variation in the size and aspect ratio of license plates.  相似文献   
919.
This paper focuses on fuel economy improvement according to the type of power steering system. Usually, a conventional power steering system is directly driven by the crankshaft of the engine with a belt, known as HPS (hydraulic power steering). However, there is some inefficiency with this system at high engine speeds. To improve this inefficiency, automobile makers have developed two power steering systems: EHPS (electro-hydraulic power steering) and MDPS (motor-driven power steering) or EPS (electric powered steering). However, there has been insufficient study of effects of the type of power steering system on fuel economy. In this paper, the effect of the type of power steering system on fuel economy is studied experimentally, and calculations of the effect on vehicle fuel economy are presenting using computer simulation with AVL cruise software. The results demonstrate that a 1% vehicle fuel economy improvement can be achieved in a vehicle with an electro-hydraulic power steering system compared to a vehicle with a hydraulic power steering system. In addition, a 1.7% vehicle fuel economy improvement can be achieved using a full electric power steering system in a FTP-75 driving cycle. These results could be used to choose a power steering system.  相似文献   
920.
In this paper, a predictive algorithm for vehicle trajectory control using the vehicle velocity and sideslip angle is proposed. Since the driving state of a vehicle generates nonholonomic constraint equations, it is difficult to control the trajectory with a conventional control algorithm. Furthermore, control vectors such as vehicle velocity and sideslip angle are coupled together; hence, a separate control for each variable is not suitable. In this study, a coupled control vector that combines the velocity and sideslip angle is proposed for the predictive control of vehicle trajectory. Since the coupled control vector is derived from the status of the vehicle’s motion, it is easy to generate a feedback control vector for the predictive controller. The coupled vector cannot be directly used as input to the vehicle systems; therefore, the vehicle input vector should be calculated from the control vector using a nonlinear function. Since nonlinear functions are not inserted in the control loop, they are calculated by the controller. Therefore, this method does not require a linearization process in the control logic, which enhances the stability and accuracy of the predictive controller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号