首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8238篇
  免费   104篇
公路运输   1921篇
综合类   600篇
水路运输   2566篇
铁路运输   779篇
综合运输   2476篇
  2022年   113篇
  2021年   63篇
  2020年   48篇
  2019年   85篇
  2018年   201篇
  2017年   126篇
  2016年   190篇
  2015年   93篇
  2014年   249篇
  2013年   1234篇
  2012年   350篇
  2011年   442篇
  2010年   295篇
  2009年   373篇
  2008年   342篇
  2007年   272篇
  2006年   234篇
  2005年   275篇
  2004年   295篇
  2003年   192篇
  2002年   152篇
  2001年   135篇
  2000年   141篇
  1999年   104篇
  1998年   130篇
  1997年   114篇
  1996年   139篇
  1995年   149篇
  1994年   84篇
  1993年   189篇
  1992年   160篇
  1991年   77篇
  1990年   84篇
  1989年   58篇
  1988年   74篇
  1987年   65篇
  1986年   59篇
  1985年   77篇
  1984年   73篇
  1983年   73篇
  1982年   73篇
  1981年   95篇
  1980年   68篇
  1979年   91篇
  1978年   56篇
  1977年   69篇
  1976年   53篇
  1975年   65篇
  1974年   51篇
  1973年   45篇
排序方式: 共有8342条查询结果,搜索用时 31 毫秒
931.
New Large Aircraft (NLA) are new aircraft developments larger than any existing aircraft. The NLA's higher seat capacity will significantly impact passenger terminal design and operations. This paper focuses on the issues regarding the departure lounge. Deterministic queuing theory is used to determine the size and seating configuration of the lounge, as well as to decide whether a second level should be built to accommodate the increase in the number of passengers. The paper also discusses the use of the satellite section of a pier‐satellite terminal as a single lounge for the NLA. Spreadsheets are used to implement the analyses.  相似文献   
932.
Automotive general assembly requires many manual assembly operations to be carried out by human workers. Ergonomic analysis is an important part of the design and evaluation of products, jobs, tools, machines and environments for safe, comfortable and effective human functioning. Most recent researches have involved the evaluation of working conditions to prevent work-related musculoskeletal disorders. The majority of previous research on automotive companies has mainly considered the results of ergonomic analyses such as RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment) and OWAS (Ovako Working Posture Analysis System). Analysis of static posture including reachability, clearances for arm, hand and tool has also been used to evaluate working conditions. However, in addition to static posture analysis, a biomechanical analysis in dynamic conditions should also be conducted. There are no integrated frameworks or standard schema for ergonomic analysis using digital human models in digital environments. The purpose of this paper is to propose a new framework for the evaluation of working conditions by ergonomic and biomechanical analysis using digital models based on XML standard schema, including: products, processes, manufacturing resources and human workers. This paper presents the analysis results using the proposed framework for automotive general assembly operations. We propose a new framework for the evaluation of the assembly operations and their environments. Then we apply a digital human model to the dynamic simulation of general automotive assembly operations based on standard schemas in XML and PPRH (Product, Process, Resource and Human). Using PPRH information based on a standard XML schema to analyze the ergonomic and biomechanical results, the engineer can visualize, analyze and improve assembly operations and working environments in automotive general assembly shops using digital models.  相似文献   
933.
Air suspension systems have been implemented in various commercial vehicles, such as buses and special purpose trucks, because of the comfortable ride and easy height control. An evaluation of the durability of vehicle parts has been required for service life and safety starting in the early stages of design. The cyclic load applied to the vehicle can cause fatigue failure of parts, such as the suspension frame. This paper presents a method to predict the fatigue life of the suspension frame at the design stage of the air suspension system used in a heavy-duty vehicle. To estimate the fatigue life using the SN method, the Dynamic Stress Time History (DSTH) is necessary for the part of interest. DSTH can be obtained from the results of the flexible body dynamic analysis using the Belgian road simulation and the Modal Stress Recovery (MSR) method. Furthermore, the reliability of the predicted fatigue life can be evaluated by considering the variations in material properties. The probability and distribution of the expected life cycle can be obtained using experimental design with a minimum number of simulations. The advantage of using statistical methods to evaluate the life cycle is the ability to predict replacement time and the probability of failure of mass-produced parts. This paper proposes a rapid and simple method that can be effectively applied to the design of vehicle parts.  相似文献   
934.
The characteristics of auto-ignition and micro-explosion behaviors of one-dimensional arrays of fuel droplets suspended in a chamber with high surrounding temperature were investigated experimentally with various droplet spacings, numbers of droplet and surrounding temperatures. The fuels used were pure n-decane and emulsified n-decane with varied water contents ranging from 10 to 30%. All experiments were performed under atmospheric conditions with high surrounding temperatures. An imaging technique using a high-speed camera was adopted to measure ignition delay, flame lifetime, and flame spread speed. The camera was also used to observe micro-explosion behaviors. As the droplet array spacing increased, the ignition delay also increased, regardless of water content. However, the lifetime of the droplet array decreased as the droplet spacing increased. The micro-explosion starting time remained unchanged regardless of the number of the droplets or the droplet spacing; however, it tended to be delayed slightly as the water percentage and droplet spacing increased.  相似文献   
935.
Depth of field effects in laser sheet imaging were considered for droplet sizing of a pre-swirl spray. A pre-swirl spray is formed before the hollow-cone type main-swirl spray from a D.I. gasoline injector, and shows transient characteristics with high axial velocity. A microscopic imaging technique was applied to obtain high spatial resolution LIF tomograms of the pre-swirl spray. A 1 mm thick Nd:YAG laser sheet was used as a light source to make the LIF tomograms that were imaged using a high-resolution CCD camera. The droplet sizing of the pre-swirl spray was carried out using an image processing technique. In the image processing procedure, the laser sheet-straddling large-sized droplets were carefully taken into account to remove the errors caused by the depth of field effects from the limited thickness and the energy distribution of the laser sheet. The mean intensity of the individual droplets and the line profile of the LIF signal around the droplet edge were inspected to screen the laser sheet-straddling large-sized droplets. In order to consider the effects of the size-dependent LIF signal intensity, the size-classified or ensemble-averaged mean intensity of the individual droplets was introduced. The mean droplet sizes such as AMD and SMD were calculated using only screened droplets, and they slightly increase before considering the depth of field effects.  相似文献   
936.
People use cars so frequently that they always consider the air-conditioning, and thermal comfort of the driver and passenger when buying a new car. Therefore accurate simulation of the thermal performance of automobile air conditioners to improve human comfort has become increasingly important. In order to improve the thermal comfort of passengers, 3-D flow motion and thermal behavior within vehicles must be analyzed. In this paper, a numerical simulation was used to investigate thermal behavior in a vehicle. Because air temperature at an air vent is related to the cooling capacity of the air conditioner, the cooling capacity was calculated using ɛ-NTU (effective number of transfer unit) theoretical equations. Using the air temperature relationship between inlet and outlet vents as boundary conditions, a 3-D unsteady κ-ɛ turbulent model was used to give a transient analysis simulation of the temperature field and flow conditions in a vehicle’s passenger cabin. Cooling cycle analysis and conjugate heat transfer analysis at the inside surface of the cabin’s ceiling, floor and sides were also considered. The predicted temperature distributions in the vehicles passenger cabin were in good agreement with those obtained experimentally.  相似文献   
937.
This paper establishes the simulation model of a city bus on the basis of the EQ6110 bus prototype and its experimental data. According to the actual urban driving cycle, the fuel economy and the traction performance of the EQ6110 city bus have been simulated, and factors such as the driving cycle, the loss of power to engine accessories, the gear-shifting strategy, the fuel shut-off strategy of the engine, etc., which influence on the bus’s fuel economy, are also quantitatively analyzed. Some conclusions are drawn as follows: (1) driving cycles have a great influence on the fuel economy of a city bus; (2) under the typical urban driving cycle of the public bus in China, the engine fuel shut-off strategy can save about 1 to 1.5 percent of the fuel consumption; and (3) the optimized gear-shifting rules can save 6.7 percent of the fuel consumption. Experimental results verify that the fuel economy for the EQ6110 public bus is improved by 7.2 pecent over the actual Wuhan urban driving cycle of the current public bus in China.  相似文献   
938.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
939.
In this paper, we investigate the transient characteristics of combustion and emissions during engine start/stop operations in hybrid electric vehicle (HEV) applications. Hydrocarbon (HC) emissions during the initial 2nd∼9th cycles are found to be significantly greater when the engine is quickly started under the original engine calibration mode. Lower intake manifold absolute pressure (MAP) was also found to cause larger residual gas dilution and poor combustion, resulting in a higher HC concentration when the cranking speed was increased. The post-catalyst HC concentration was found in the way of initially decrease and then to increase again as the cranking speed was increased. A lowest concentration value was achieved at a cranking speed of 1000 r/min. Engine shut-down by fuel cut-off was shown to produce lower emissions than shut-down by ignition cut-off as one can avoid misfire of the last fuel injection cycle. The fuel deposited during the stop process seems to impact engine restart enrichment mostly during the initial 0.7 s for this engine, whose performance is dominated by the MAP transition characteristic and the time coefficient for fuel vaporization in this time period  相似文献   
940.
Optimized design for a MacPherson strut suspension with side load springs   总被引:1,自引:0,他引:1  
Undesired lateral force inevitably exists in a MacPherson suspension system, which is liable to damper rod’s side wear and promotes the damper’s inner friction decreasing the ride performance from the suspension system. Substituting a new side load spring with curved centerline for the conventional coil spring has been proven able to solve these problems and Multi-body Dynamics combining with Finite Elements Analysis may be an efficient method in optimizing its design. Therefore, taking a passenger car as example, a detailed multi-body dynamics model for the suspension system is built to simulate forces exerted on the damper and the minimization of its lateral component is selected as the design target for the spring. When the structure optimization of the side load spring is performed using FEA software ANSYS, its vertical and lateral elastic characteristics, supported by test data, are analyzed. After importing FEA results back to the suspension system, the dynamics simulation can be performed to validate the optimization result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号