In the connected vehicles, connecting interfaces bring threats to the vehicles and they can be hacked to impact the vehicles and drivers. Compared with traditional vehicles, connected vehicles require more information transfer. Sensor signals and critical data must be protected to ensure the cyber security of connected vehicles. The communications among ECUs, sensors, and gateways are connected by in-vehicle networks. This paper discussed the state-of-art techniques about secure communication for in-vehicle networks. First, the related concepts in automotive secure communication have been provided. Then we have compared and contrasted existing approaches for secure communication. We have analyzed the advantages/disadvantages of MAC and digital signatures for message authentication and compared the performance and limitations of different cryptographic algorithms. Firewall and intrusion detection system are introduced to protect the networks. The constraints and features of different intrusion detection approaches are presented. After that, the technical requirements for cryptographic mechanism and intrusion detection policy are concluded. Based on the review of current researches, the future development directions of the automotive network security have been discussed. The purpose of this paper is to review current techniques on automotive secure communication and suggest suitable secure approaches to implement on the in-vehicle networks. 相似文献
With the objective of deriving useful insights into measures against traffic congestion at service areas (SAs) and parking areas (PAs) on expressways and ensuring efficient use of SAs/PAs, this study investigated the decisions on where a truck is parked (i.e., choice of an SA or a PA), how long it is parked (i.e., parking time), and their influential factors. To this end, this study used the trajectory data of 1600 trucks recorded in 6-min intervals by in-vehicle digital tachographs on the Sanyo and Chugoku Expressways in Japan from October 2013 to March 2014. First, the aspect of repeated choice of each truck (i.e., habitual behavior) toward a specific SA/PA was clarified. Next, a multilevel discrete–continuous model (Type II Tobit model) was developed to reveal the factors affecting the above decisions. The modeling results confirmed the existence of habitual behavior and showed that trucks were more likely to be parked a longer time at an SA/PA when it is closer to the destination. It appears that truck drivers may adjust their time at the SA/PA close to the destination to comply with the arrival time, which is often predetermined by the owner of the transported goods. Furthermore, the availability of restaurants and shops, and the number of parking spaces available for trucks and trailers are important determinants of parking time, whereas the existence of a convenience store is important to the choice of the SA/PA. Parking experience has an extremely strong positive effect on the parking choice and use. Moreover, increasing the number of parking lots may induce its longer use.