首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1460篇
  免费   15篇
公路运输   674篇
综合类   39篇
水路运输   331篇
铁路运输   28篇
综合运输   403篇
  2022年   11篇
  2021年   9篇
  2020年   10篇
  2019年   6篇
  2018年   65篇
  2017年   75篇
  2016年   156篇
  2015年   12篇
  2014年   46篇
  2013年   137篇
  2012年   95篇
  2011年   164篇
  2010年   150篇
  2009年   68篇
  2008年   119篇
  2007年   53篇
  2006年   21篇
  2005年   28篇
  2004年   22篇
  2003年   12篇
  2002年   16篇
  2001年   17篇
  2000年   6篇
  1999年   14篇
  1998年   9篇
  1997年   5篇
  1996年   8篇
  1995年   12篇
  1994年   9篇
  1993年   11篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   9篇
  1983年   7篇
  1982年   6篇
  1981年   10篇
  1980年   6篇
  1979年   9篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   5篇
  1973年   2篇
  1972年   4篇
排序方式: 共有1475条查询结果,搜索用时 250 毫秒
191.
Effect of Traction Force Distribution Control on Vehicle Dynamics   总被引:1,自引:0,他引:1  
The purpose of this study is to clarify vehicle dynamics effected by traction force distribution, not only between the front and rear wheels but also between the left and right wheels. Contribution of traction force distribution to vehicle turning performance was investigated using a mathematical simulation and an experimental vehicle. The results indicates that the control of traction control distribution between the left and right wheels greatly influences vehicle turning characteristics and improve the performance even in a marginal turning condition.  相似文献   
192.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   
193.
Improving pedestrian safety at intersections remains a critical issue. Although several types of safety countermeasures, such as reforming intersection layouts, have been implemented, methods have not yet been established to quantitatively evaluate the effects of these countermeasures before installation. One of the main issues in pedestrian safety is conflicts with turning vehicles. This study aims to develop an integrated model to represent the variations in the maneuvers of left-turners (left-hand traffic) at signalized intersections that dynamically considers the vehicle reaction to intersection geometry and crossing pedestrians. The proposed method consists of four empirically developed stochastic sub-models, including a path model, free-flow speed profile model, lag/gap acceptance model, and stopping/clearing speed profile model. Since safety assessment is the main objective driving the development of the proposed model, this study uses post-encroachment time (PET) and vehicle speed at the crosswalk as validation parameters. Preliminary validation results obtained by Monte Carlo simulation show that the proposed integrated model can realistically represent the variations in vehicle maneuvers as well as the distribution of PET and vehicle speeds at the crosswalk.  相似文献   
194.
This study proposes an aerodynamically optimized outer shape of a sedan by using an Artificial Neural Network (ANN), which focused on modifying the rear body shapes of the sedan. To determine the optimization variables, the unsteady flow field around the sedan driving at very fast speeds was analyzed by CFD simulation, and fluctuations of the drag coefficient (C D ) and pressure around the car were calculated. After consideration of the baseline result of CFD, 6 local parts from the end of the sedan were chosen as the design variables for optimization. Moreover, an ANN approximation model was established with 64 experimental points generated by the D-optimal methodology. As a result, an aerodynamically optimized shape for the rear end of the sedan in which the aerodynamic performance is improved by about 5.64% when compared to the baseline vehicle is proposed. Finally, it is expected that within the accepted range of shape modifications for a rear body, the aerodynamic performance of a sedan can be enhanced so that the fuel efficiency of the sedan can be improved. The YF SONATA, a sedan manufactured by Hyundai Motors Corporate, played a major role in this research as the baseline vehicle.  相似文献   
195.
The most important factor in gas strut design is determining an optimized layout. If the layout is not optimized, vehicle operators will have a suboptimal experience when opening and closing the tailgate. A poor layout of the gas struts causes operators to work excessively when they open/close the tailgate, and vehicle owners will incur additional expenses due to deterioration in the body quality of the vehicle. Thus, an optimized gas strut layout is very important, even if it does not seem interesting. This paper describes the tailgate operation process and focuses on determining an optimized gas strut layout for opening/closing the tailgate easily.  相似文献   
196.
This study compares the optimum designs of center pillar assembly with advanced high-strength steel (AHSS) to that of conventional steel for crashworthiness and weight reduction in side impacts. A simplified side impact analysis method was used to simulate the crash behavior of the center pillar assembly with efficient computing time. Thickness optimization aims to perform an S-shaped deformation of the center pillar toward the cabin to reduce the injury level of a driver in a crash test. Center pillar members were regarded as an assembly of parts that are fabricated with tailor-welded blanks, and the thickness of each part was selected as a design variable. The thickness variables of parts that have significant effects on the deformation mechanism were extracted as the main design variables for thickness optimization based on the results of a sensitivity analysis with design of experiments. The optimization condition was constructed to induce an S-shaped deformation mode and reduce the weight of the center pillar assembly. An optimum design was obtained after several iterations with response surface methodology (RSM). Optimization was first performed with conventional steel and then with AHSS with the same procedure to optimize the crashworthiness of the center pillar assembly. After thickness optimization, optimum designs were applied to the full vehicle analysis to evaluate the validity of the optimization scheme with the simplified side impact analysis method. Then, the crashworthiness of optimum designs with conventional steel and AHSS were compared using the full vehicle analysis. This comparison demonstrates that AHSS can be more effectively utilized than conventional steel to obtain a lightweight design of an auto-body with enhanced crashworthiness.  相似文献   
197.
The warm shrink fitting process is generally used to assemble automobile transmission parts (shafts/gears). However, this process causes a deformation in the addendum and dedendum of the gear depending on the fitting interference and gear profile, and this deformation causes additional noise and vibration between the gears. To address these problems, the warm shrink fitting process is analyzed by considering the error in the dimensional deformation of the addendum and dedendum found when comparing the results of a theoretical analysis and finite element analysis (FEA). A correction coefficient that reduces this error is derived through an analysis of the difference in the cross-sectional area between the shapes used for the theoretical analysis and that of the actual gear, and a closed-form equation to predict the dimensional deformation of the addendum and dedendum is proposed. The FEA method is proposed to analyze the thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process). To verify the closed-form equation using the correction coefficient, measurements are made of actual helical gears used in automobile transmissions. The results are in good agreement with those given by the closed-form equation.  相似文献   
198.
199.
In order to achieve safe navigation, it is important to be able to understand and calculate the effects of an external force on the maneuvering behavior of a ship. This paper analyzes the course stability and yaw motion of a ship traveling under steady wind conditions. A course stability criterion and approximate formulae for the yaw motion in steady wind, including the aero/hydrodynamic force derivatives for the ship, are derived. To confirm the reliability of the criterion and formulae, they were used to investigate a pure car carrier in steady wind. The results of this investigation revealed that course instability appears in the head and following wind directions, mainly under the influence of aerodynamic derivatives with respect to the yaw restoring forces. However, this course instability can be reduced by applying steering control. For winds ranging from head winds to beam winds, yaw oscillation appears when the period is relatively long and the damping is small. The analytical formulae derived here can be used to gain a better understanding of ship maneuvering behavior in steady wind.  相似文献   
200.
ABSTRACT

Based on an analysis of 253 related papers drawn from the Web of Science database, this study examines holistic sustainability research in liner shipping management literature using a citation network analysis (CNA) approach followed by a qualitative analysis of findings. We identify four major research domains, namely shipping performance, port selection and management, shipping markets, and environment, as well as related sub-domains of shipping performance. We discuss the current research trends and focal issues in these domains with a focus on their implications for policy development. Our results indicate that while the sustainability discourse in the literature has developed and matured significantly over the last decade, generating valuable insights for practitioners and regulators alike, it still struggles with blurry terminology and a lack of holistic frameworks jointly addressing the different aspects of sustainability: Economic considerations of liner shipping are still the main concern, while environmental and social issues are less regarded in the academic discourse. Furthermore, we identify a dearth of studies rooted in managerial or economic theory. In this regard, our study provides insights on the scope of the holistic sustainability discourse in liner shipping management, its contributions to theory and practice, and its implications for the further development of policies addressing sustainability in liner shipping management. We advocate further construct development for sustainability in liner shipping, as well as empirical tests of the antecedents of sustainability practice adoption in the industry for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号