首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1723篇
  免费   22篇
公路运输   664篇
综合类   61篇
水路运输   521篇
铁路运输   50篇
综合运输   449篇
  2022年   23篇
  2021年   14篇
  2020年   16篇
  2019年   19篇
  2018年   67篇
  2017年   66篇
  2016年   76篇
  2015年   27篇
  2014年   88篇
  2013年   246篇
  2012年   93篇
  2011年   105篇
  2010年   91篇
  2009年   106篇
  2008年   89篇
  2007年   38篇
  2006年   39篇
  2005年   43篇
  2004年   27篇
  2003年   24篇
  2002年   30篇
  2001年   27篇
  2000年   21篇
  1999年   23篇
  1998年   23篇
  1997年   17篇
  1996年   25篇
  1995年   23篇
  1994年   11篇
  1993年   16篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   11篇
  1988年   17篇
  1987年   8篇
  1986年   12篇
  1985年   8篇
  1984年   15篇
  1983年   11篇
  1982年   8篇
  1981年   21篇
  1980年   9篇
  1979年   22篇
  1978年   7篇
  1977年   9篇
  1976年   9篇
  1975年   7篇
  1974年   8篇
  1973年   9篇
排序方式: 共有1745条查询结果,搜索用时 15 毫秒
851.
The effect of passengers on a railway vehicle is usually considered as additional mass in designing a carbody. However, previous studies by means of stationary excitation tests or running tests using actual vehicles indicate that passengers behave not as mass but as damping. In this paper, the authors examined the passengers' damping effect under controlled excitation conditions on a roller rig through a series of excitation tests using a commuter-type vehicle. Large and multi-modal reductions of flexural vibrations of the carbody were observed when passengers existed. Influences of the number of passengers, distributions and postures of passengers were investigated. The authors also tried to mimic the damping effect by passengers using flexible tanks filled with fluids. Three kinds of fluids which have different viscosities have been tested. As a result of the excitation tests, good vibration reduction effects were observed by applying those tanks, and it has been found that the flexible tanks filled with fluids bring about vibration reduction effect (including multi-modal reduction) which is equal to or rather better than the case of similar mass of passengers in the carbody; the difference of viscosity gave little affect on the damping abilities. From these measurement results, a possibility of realising effective damping devices against flexural vibrations of railway vehicle carbodies representing passengers damping effect, in a simple, economical and environmental friendly way, has been demonstrated.  相似文献   
852.
The ISG (Idle Stop and Go) systems are commonly used in modern automobiles because they are economical and environmental friendly technology. However, when a vehicle stops, the air-conditioning system stops, resulting in thermal discomfort to passengers in the cabin. This paper examines a cold storage heat-exchanger (CSH) integrated with an evaporator. The position of the cold storage parts inside a heat exchanger was analyzed through numerical simulations using FLUENT to create an adequate design for a CSH. The CSH performance was then examined with various airflow volumes and optimized experimentally in terms of the refrigerant flow circuit and fin density in the heat exchanger. Next, an experiment on the coldness release performance of the CSH was conducted in the air-conditioning system. The cold storage system with optimized CSH experiment resulted in lower air discharge temperatures (3.5 °C ~ 4.9 °C) than current air-conditioning systems, and delayed the warm-up by approximately 155 seconds to reach 18 °C temperature of air discharge. For this study, the CSH is an effective solution for the ISG-applied vehicles with less investment by transforming current air-conditioners’ structures more effectively.  相似文献   
853.
In this study, shape optimization was conducted for a vehicle’s rear suspension torsion beam to improve its dynamic handling performance. To determine the design variables affecting the vehicle roll characteristics, a sensitivity analysis was conducted using the result of a Taguchi experiment with 6 factors in 8 runs. The upper and lower-flange lengths and web thickness of the torsion beam section, as well as the vertical height difference between the inner and outer of torsion beams, were determined as design variables through sensitivity analysis of the opposite wheel travel test for optimization of the torsion beam axle. The Box–Behnken experimental design with 4 factors and 27 runs was performed using the selected design variables and by performing opposite wheel travel analysis according to the experimental design, and the response surface functions of the roll stiffness, roll steer coefficient, roll center height, and mass of the torsion beam were generated. Using these response functions, shape optimization was conducted for the torsion beam of the rear suspension system. Dynamic performance analysis was performed by applying the optimized H-shaped torsion beam to the rear suspension of the vehicle dynamics model, and it was validated that the dynamic response performance of the optimized vehicle was improved.  相似文献   
854.
In vehicle braking systems, the non-uniform contact pressure distribution on the brake pad is a major cause of uneven wear. The experimental approach of the wear phenomenon is the time consuming and costly. For this reason, a threedimensional finite element (FE) model of a brake system is presented for numerical simulation in this paper. A coupled thermo-mechanical analysis is carried out to confirm the non-uniform contact pressure distribution. A correlation between the non-uniform contact pressure and uneven wear is confirmed by measuring the amount of wear in the brake pad. The shape optimization of the brake pad is performed to reduce the uneven wear. In addition, the simulation results, such as natural frequency and temperature, are compared to experimental results.  相似文献   
855.
The ISG (Idle Stop and Go) system isvery useful in the automobile industry because it increases fuel consumption and reduces green house gas emissions. However, when the engine is on standby, the air-conditioning system does not work due to compressor inactivity, causing thermal discomfort to passengers. This study examines the thermal storage system, which is a cold storage heat exchanger integrated with a current evaporator. The experiments were conducted for an optimum cold storage heat exchanger design with various fin heights and densities, a number of stacking evaporator plates, refrigerant flow circuits inside the evaporator, and PCMs (Phase Change Materials) in the heat exchanger. The effects of coldness-release performance were examined with various ambient temperatures and air flow volume rates to the cold storage heat exchanger. The visualization of PCM’s freezing and melting was conducted with the cold storage heat exchanger. From the results, we found that the air discharge temperature of the air-conditioning system that was applied to the optimum cold storage heat exchanger was delayed around 540 seconds compared to the current air-conditioning system to reach 24 °C. Thus we can say that the cold storage heat exchanger integrated with an evaporator is an effective solution for ISG vehicles in maintaining thermal comfort in vehicle cabins during short engine stops.  相似文献   
856.
Safety mechanism is required for an automotive battery pack to prevent thermal failure which could lead to catastrophic events. Passively cooled battery packs can prevent thermal failure by conducting adaptive control of battery power without any external cooling device. The key to this power control is how to secure battery safety while minimizing energy loss. This paper proposes a novel, adaptive power control strategy for automotive passive-cooling battery packs. Four different cases with electrochemical battery model are simulated and compared to each other according to a city driving profile. Driving simulation result confirmed that the present power control algorithm is an effective solution for preventing thermal failure along with improving energy efficiency of automotive battery packs.  相似文献   
857.
In the conventional 2D-FFT based target detection method, all range-Doppler cells are computed by FFT (Fast Fourier Transform) and scanned by CA-CFAR (Cell-Averaging Constant False Alarm Rate) detection. This results in high computational complexity and long processing time. In this paper, we developed an automotive 24 GHz BSD (Blind Spot Detection) FMCW (Frequency Modulated Continuous Wave) radar with a low complexity target detection architecture based on a ROI (Region Of Interest) pre-processing scheme. In the real BSD zone, because the number of cars to be detected is limited, the designed method only extracts their velocities corresponding to the range ROIs in which real targets exist. Moreover, the presence probability of vehicles with the same range-bin but different velocities is very low. Thus, in the designed method, some Doppler ROIs cells with a high magnitude are only applied for CA-CFAR detection. This architecture can dramatically reduce the amount of data to be processed compared to that of the conventional 2D FFT based method, resulting in enhanced processing time. We developed a 24 GHz FMCW radar system composed a transceiver, antennas, and signal processing module. The designed algorithm was implemented in a tiny micro-processor of the signal processing module. By implementing our proposed algorithm in the developed 24 GHz FMCW radar system in an anechoic chamber and a real road, we verified that the range and velocity of a car occupying the BSD zone were detected. Compared to that of the conventional method, the reduction ratio of the total processing time was measured to be 52.4 %.  相似文献   
858.
Summary Each vehicle on a section of highway is potentially a driving condition 'sensor.' For example, a vehicle's speed give can give a clue about the traffic conditions in its section of roadway. By 'cooperative estimation,' we mean a system that uses a communication network to combine the experience of many vehicles into parameter estimates that are more useful than the estimates that any individual vehicle could generate by itself. This paper demonstrates the cooperative estimation concept by showing how it can be used to estimate traffic conditions and road friction without using roadside sensors.  相似文献   
859.
Summary This paper presents new methods for estimating the axle weight of a moving vehicle, using two piezoelectric sensors and adaptive-footprint tire model. It is more difficult to weigh vehicles in motion accurately than to weigh standing vehicles. The difficulties in weighing moving vehicles result from sensor limitations as well as dynamic loading effects induced by vehicle/pavement interactions. For example, two identical vehicles with the same weight will generate sensor signals that differ in the shape and the peak value, depending the tire pressure, vehicle speed, road roughness, and sensor characteristics. This paper develops a method that is much less sensitive to these variable factors in determining the axle weight of a moving vehicle. In the developed method, first the piezoelectric sensor signal is reconstructed using the inverse dynamics of a high-pass filter representing the piezoelectric sensor. Then, the reconstructed signal, is normalized, using the nominal road/tire contact length obtained using an adaptive-footprint tire model, and then integrated. Experiments are performed with 3 vehicles of known weight ranging from 1,400 kg to 28,040 kg. The developed method is compared to two other algorithms. Results show that the developed method is most consistent and accurate.  相似文献   
860.
Nonlinear Dynamics of Vehicle Traction   总被引:3,自引:0,他引:3  
Summary The purpose of this study is to understand the nonlinear dynamics of longitudinal ground vehicle traction. Specifically, single-wheel models of rubber-tired automobiles under straight-ahead braking and acceleration conditions are investigated in detail. Customarily, the forward vehicle speed and the rotational rate of the tire/wheel are taken as dynamic states. This paper motivates an alternative formulation in which wheel slip, a dimensionless measure of the difference between the vehicle speed and the circumferential speed of the tire relative to the wheel center, replaces the angular velocity of the tire/wheel as a dynamic state. This formulation offers new insight into the dynamic behavior of vehicle traction. The unique features of the modeling approach allow one to capture the full range of dynamic responses of the single-wheel traction models in a relatively simple geometric manner. The models developed here may also be useful for developing and implementing anti-lock brake and traction control control schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号