首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1652篇
  免费   25篇
公路运输   725篇
综合类   60篇
水路运输   429篇
铁路运输   50篇
综合运输   413篇
  2023年   24篇
  2022年   59篇
  2021年   15篇
  2020年   9篇
  2019年   12篇
  2018年   89篇
  2017年   46篇
  2016年   102篇
  2015年   26篇
  2014年   97篇
  2013年   220篇
  2012年   91篇
  2011年   105篇
  2010年   104篇
  2009年   82篇
  2008年   96篇
  2007年   47篇
  2006年   36篇
  2005年   36篇
  2004年   24篇
  2003年   15篇
  2002年   16篇
  2001年   20篇
  2000年   32篇
  1999年   20篇
  1998年   15篇
  1997年   19篇
  1996年   24篇
  1995年   26篇
  1994年   13篇
  1993年   20篇
  1992年   13篇
  1991年   11篇
  1990年   5篇
  1988年   11篇
  1987年   6篇
  1986年   10篇
  1985年   10篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1677条查询结果,搜索用时 984 毫秒
241.
This paper proposes an active suspension system to fulfil the dual objective of improving ride comfort while trying to keep the suspension deflection within the limits of the rattle space. The scheme is based on a novel nonlinear disturbance compensator which employs a nonlinear function of the suspension deflection. The scheme is analysed and validated by simulation and experimentation on a laboratory setup. The performance is compared with a passive suspension system for a variety of road profiles.  相似文献   
242.
In diesel engine, spray penetration is usually changed by in-cylinder gas flow. Accurate prediction on diesel spray with gas flow is important to the optimal design of diesel fuel injection system. This paper presents a theory investigation focusing on the penetration of diesel spray with gas flow. In order to understand the effect of gas flow on the penetration of diesel spray, a one-dimensional spray model is developed from an idealized diesel spray, which is able to predict the spray behavior under different gas flow conditions. The ambient gas flow is simplified as ideal flow that has only constant flow velocity along x-axial and y-axial directions of spray. The x-axial and y-axial directions are respectively defined as along and vertical spray directions. The main assumption is that the y-axial direction gas flow has no effect on the penetration of spray along x-axial direction. The principles of conservation of mass and momentum are used in the derivation. Momentum of in-cylinder air flow is also taken into consideration. Validation of the model at stable condition is achieved by comparing model predictions with experimental measurements of diesel spray without gas flow from Naber's experiments. Furthermore, CFD simulations on penetration of diesel spray with gas flow were performed with the commercial code AVL-fire. The onedimensional model is validated by the penetration results with gas flow from CFD calculation. Results show that a reasonable estimation of the spray evolution can be obtained for both with and without ambient gas flow conditions.  相似文献   
243.
This paper discusses two different methods for the detection of flatness defects present on the mounting surfaces of oil pans using laser-scanned point clouds. The first method involves registration, which is a widely used method in the field of 3D data inspection: scanned point clouds are registered with CAD data and the iterative closest point (ICP) algorithm is used for further comparison. The second method is our proposed method, a simple yet effective method for measuring the flatness of an oil pan mounting surface. The process is based on the construction of a reference plane on the scanned surface. The oil pan mounting surface is scanned by a 3D laser scanner, obtaining point cloud data that is then further processed to reduce noise. Using this processed data, a reference plane parallel to the direction of the mounting surface is defined at the mean position of the mounting surface. The direction of the reference plane is determined by the normal vector of the mounting surface. Construction of the reference plane is carried out by the singular value decomposition (SVD) technique. The deviation of the surface from the reference plane is measured by calculating the error distance between the points of the surface to the reference plane using the least-squares method.  相似文献   
244.
The appearance and exterior precision of passenger cars aesthetics has become an important factor in the automotive industry. During vehicle assembly, the curvature of the roof can change slightly and create cosmetic defects that affect the exterior appearance. The critical factor causing curvature change on the roof is the thermally driven expansion of an elastomer-based mastic sealer which is applied between the exterior roof panel and support rail during the frame assembly process. Therefore the expansion of the mastic sealer was modeled to predict the curvature change in the roof panel. In order to evaluate the causes and predict the curvature change quantitatively, a Finite Element (FE) simulation of the oven heating and mastic curing was performed. Validation of the simulation model was performed by comparing the local deformation and amount of the curvature change on the roof obtained from the actual process. In order to minimize the curvature change, the Taguchi method was used in conjunction with the FE model where a total of eight factors were chosen to perform a sensitivity analysis. In order to exclude the deformation due to residual stress resulting from the oven process, it was selected as a noise factor. Response was taken as the maximum curvature change calculated by a flexural function which was used to distinguish absolute curvature that is not affected by the horizontal or vertical movement of roof panel. A total of 18 cases were analyzed with length of each sealer, pitch of sealer, and rail location being identified as the most influential factors affecting the curvature change. Using the optimum values, the amount of curvature change in the roof panel was reduced by 12 percent.  相似文献   
245.
This paper describes a pressure-model-based coordinated control method of a variable geometry turbine (VGT) and dual-loop exhaust gas recirculation (EGR) in a diesel engine air-path system. Conventionally, air fraction or burnt gas fraction states are controlled for the control of dual-loop EGR systems, but fraction control is not practical since sensors for fractions are not available on production engines. In fact, there is still great controversy over how best to select control outputs for dual-loop EGR systems. In this paper, pressure and mass flow states are chosen as control outputs without fraction states considering the availability and reliability of sensors. A coordinated controller based on the simple control-oriented model is designed with practical aspects, which is applicable for simultaneous operations of high pressure (HP) EGR, low pressure (LP) EGR, and VGT. In addition, the controller adopts the method of input-output linearization using back-stepping to solve the chronic problems of conventional pressure-based controllers such as coupling effects between operations of HP EGR, and VGT. The control performance is verified by simulation based on the proven GT-POWER model of a heavy-duty 6000cc diesel engine air-path.  相似文献   
246.
The Automatic Crash Notification (ACN) system is an effective technology to decrease the crash response time, improve the level of post-accident rescue and alleviate the severity of injuries. To realize this system, a vehicle terminal is developed. And based on a moving window integral algorithm, the trigger algorithm of ACN system is designed. By comparing the effect of different window widths on the trigger algorithm, we select the window width of the moving window integral algorithm as 8 ms. After system is triggered, different notify types was determined according to the change of velocity in the moving window. A sled impact simulation test shows that the impact can be identified rapidly and also the notify types can be judged by the trigger algorithm. A vehicle road test proves that the ACN system has no false trigger cases. The outcomes of this study support identifications of accidents and crash severities for both occupants and emergency centers.  相似文献   
247.
A modified thermostatic control strategy is applied to the powertrain control of a parallel mild hybrid electric vehicle (HEV) to improve fuel economy. This strategy can improve the fuel economy of a parallel mild HEV by operating internal combustion engine (ICE) in a high-efficiency region. Thus, in this study, experiments of a parallel mild HEV were conducted to analyze the characteristics of the hybrid electric powertrain and a numerical model is developed for the vehicle. Based on the results, the thermostatic control strategy was modified and applied to the vehicle model. Also, battery protection logic by using electrochemical battery model is applied because the active usage of battery by thermostatic control strategy can damage the battery. The simulation results of the vehicle under urban driving conditions show that the thermostatic control strategy can improve the vehicle’s fuel economy by 3.7 % compared with that of the conventional strategy. The results also suggest that the trade-off between the fuel economy improvement by efficient ICE operation and the battery life reduction by active battery usage should be carefully investigated when a thermostatic control strategy is applied to a parallel mild HEV.  相似文献   
248.
Based on non-thermal plasma (NTP) technology fed by oxygen and air as the gas source respectively, the experimental system of exhaust gas recirculation (EGR) cooler regeneration was built to do a study at different regeneration temperatures. By measuring the concentration of main active substance and COx in regeneration process, the influence of temperature on regeneration aided by oxygen-fed NTP and air-fed NTP was investigated. The experimental results indicate that EGR cooler can be regenerated both by air-fed NTP and oxygen-fed NTP at a wide temperature range of 18 °C ~ 300 °C. By comparison of the regeneration with oxygen-fed NTP and air-fed NTP, it can be easily known that the regeneration effect is most remarkable at 150 °C with oxygen-fed NTP and at 120 °C with air-fed NTP. In addition, when the temperature is below 150 °C especially at 120 °C, the regeneration efficiency of air-fed NTP is lower than oxygen-fed NTP, nevertheless, when the temperature is above 150 °C, air-fed NTP has a superiority in regeneration and the higher the temperature is, the more obvious the superiority will be.  相似文献   
249.
Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.  相似文献   
250.
This paper proposes á degree of fault isolability concept and active fault diagnosis method for redundantly actuated vehicle systems. Fault isolability is a structural property related to system dynamics and composition of actuators and sensors. Existing research on testing fault isolability has involved checking whether the system is isolable, i.e., binary in nature. A continuous value rather than a binary metric is needed to evaluate how isolable a given system fault is based on a specific measurement set. After fault components are isolated, the fault type and magnitude are estimated by analyzing residual vectors. In a redundantly actuated system, the number of controls/actuators is greater than the system mobility. Thus, the control input distribution to achieve a given control objective is not unique. In the case of a fault, the active fault diagnosis system adjusts the control input distribution to diagnose the fault. Thus, much more system information can be identified by additional excitation through a redundantly actuated system, which improves the fault diagnosis performance. Simulation results of a four-wheel independently driven and steered vehicle model validated the proposed degree of fault isolability and the effectiveness of the proposed active fault diagnosis method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号