首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   3篇
公路运输   282篇
综合类   13篇
水路运输   106篇
铁路运输   2篇
综合运输   80篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   28篇
  2017年   36篇
  2016年   25篇
  2015年   6篇
  2014年   39篇
  2013年   57篇
  2012年   38篇
  2011年   46篇
  2010年   36篇
  2009年   52篇
  2008年   38篇
  2007年   4篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1976年   1篇
  1973年   4篇
排序方式: 共有483条查询结果,搜索用时 359 毫秒
341.
Recent studies on dual-fuel combustion in compression-ignition (CI) engines, also known as diesel engines, fall into two categories. In the first category are studies focused on the addition of small amounts of gaseous fuel to CI engines. In these studies, gaseous fuel is regarded as a secondary fuel and diesel fuel is regarded as the main fuel for combustion. The objectives of these studies typically involve reducing particulate matter (PM) emissions by using gaseous fuel as a partial substitution for diesel fuel. However, the addition of gaseous fuel raises the combustion temperature, which increases emissions of nitrogen oxides (NOx). In the second category are studies focused on reactivity-controlled compression-ignition (RCCI) combustion. RCCI combustion can be implemented by early diesel injection with a large amount of low-reactivity fuel such as gasoline or gaseous fuel. Although RCCI combustion promises lower NOx and PM emissions and higher thermal efficiency than conventional diesel combustion, it requires a higher intake pressure (usually more than 1.7 bars) to maintain a lean fuel mixture. Therefore, in this study, practical applications of dual-fuel combustion with a low air-fuel ratio (AFR), which implies a low intake pressure, were systemically evaluated using propane in a diesel engine. The characteristics of dualfuel combustion for high and low AFRs were first evaluated. The proportion of propane used for four different operating conditions was then increased to decrease emissions and to identify the optimal condition for dual-fuel combustion. Although the four operating conditions differ, the AFR was maintained at 20 (? approximately equal to 0.72) and the 50% mass fraction burned (MFB 50) was also fixed. The results show that dual-fuel combustion can reduce NOx and PM emissions in comparison to conventional diesel combustion.  相似文献   
342.
A vehicle rollover is a critical accident that could have many causes. This paper describes a novel vision-based system for measuring vehicle roof deformation due to a rollover accident. A vision-based measurement system offers an overall view of structural deformation simply at low cost. Our measurement system was constructed using a Kinect camera from Microsoft, a battery, and a remote-controlled recording computer. Color images and distance maps can be obtained using two sensors embedded in the Kinect along with customized software, and the distance from the camera lens to a specific object can be calculated with a simple equation. To test our proposed approach, actual vehicle rollover experiments were conducted and the resulting roof deformations were compared to those indicated by our system. Moreover, cross-sectional image of Apillar was analyzed to calculate bending moment of inertia. From the research results, it was able to show that deformation errors were within 13 mm, and roof deformation was correlated with vehicle type, or vehicle curb weight.  相似文献   
343.
Vehicle-based applications were recently introduced to improve traffic safety and efficiency. These applications are classified into either safety-oriented or non-safety-oriented applications. Safety-oriented applications are typically provided by means of vehicle-to-vehicle (V2V) communications to support reliable and fast alert message propagation to all surrounding vehicles when an emergency occurs on the road. In vehicular ad-hoc network (VANET) broadcast-based packet forwarding is typically preferred for the propagation of urgent traffic-related information to all reachable nodes within a specified dangerous region. However, this approach may cause broadcast storm problems, which can lead to serious contention between transmissions from adjacent nodes. In this paper, we propose an alert message propagation scheme that is based on selective forwarding and aims to i) minimize the number of rebroadcasting nodes and ii) guarantee reliable and fast alert message delivery to all reachable nodes. Our scheme was evaluated using two different highway scenarios. The simulation results demonstrated that the performance of the proposed scheme was better than that of existing broadcast schemes in terms of the message delivery latency, the message delivery ratio, and the message rebroadcasting ratio.  相似文献   
344.
For several decades, the primary goal of the automotive industry has been to reduce harmful emissions and improve fuel economy. Gasoline engines are clean and powerful propulsion systems, but have poorer fuel economy than that of diesel engines. However, due to the development of new technologies such as variable valve timing and lift and direct gasoline injection, controlled autoignition (CAI) combustion can be realized. CAI engines combine the advantages of cleaner emissions and lower fuel consumption than conventional spark-ignition gasoline engines. In this study, a cylinder-pressure-based combustion phase detection method for CAI combustion is proposed. This method utilizes a normalized difference pressure (NDP), which is defined as the normalized pressure difference between the firing and motoring in-cylinder pressures. The proposed method was developed and validated with steady-state experimental data from an inline 4 cylinder, 2 L gasoline direct injection (GDI) CAI engine. Because the calculations in the NDP method are faster and simpler than in the conventional combustion phase detection method in CAI engines, this method can be embedded in a real-time controller. Furthermore, the proposed method displayed good accuracy in detecting the combustion phase and thus stabilized CAI combustion. Finally, the detailed experimental results are presented.  相似文献   
345.
In new slim torque converters, lock-up clutches are used to provide high fuel efficiency at low speed. However, the slimness of the converters causes difficulty in heat dissipation, which may damage the friction material and shorten its life span. A cooling hole in the lock-up piston reduces the heat but also reduces the torque because oil flows through the hole due to the pressure difference between the two faces of the piston. In the early stages of the development of this type of torque converter, designers must consider the minimum flow rate required to cool the friction material and the minimum torque capacity required to transmit the engine torque. This research explored two methods of estimating these parameters. In the first method, an estimation equation was derived by combining the response surface method with physical properties such as the centrifugal force, a sudden expansion, a sudden contraction, and the steady flow energy equation. The second method involved the use of an artificial neural network. The feasibility of the estimates based on statistics and on the artificial neural network were confirmed in the design stage by comparing experimental and estimated data. An estimation program was created using the C#.Net language and has been used for actual torque converter designs by the Korea Powertrain Company.  相似文献   
346.
Recently, to reduce environmental pollution and the waste of limited energy resources, there is an increasing requirement for higher engine efficiency and lower levels of harmful emissions. A premixed charge compression ignition (PCCI) engine, which uses a 2-stage type injection, has drawn attention because this combustion system can simultaneously reduce the amount of NOx and PM exhausted from diesel engines. It is well known that the fuel injection timing and the spray angle in a PCCI engine affect the mixture formation and the combustion. To acquire two optimal injection timings, the combustion and emission characteristics of the PCCI engine were analyzed with various injection conditions. The flame visualization was performed to validate the result obtained from the engine test. This study reveals that the optimum injection timings are BTDC 60° for the first injection and ATDC 5° for the second injection. In addition, the injection ratio of 3 to 7 showed the best NOx and PM emission results.  相似文献   
347.
This paper presents a method of simultaneous estimation of tire pressure and tire-road friction. A sliding-mode scheme is designed to identify the system state and the parameter variation of a torsional tire system, which greatly depend on the change in tire pressure. Then, the recursive least-squares method with a forgetting facto is used to estimate the parameter variations of the tire system and the tire-road friction force without a friction model using the information retrieved from the equivalent input for sliding motion. A simulation study is performed to illustrate the effectiveness of the proposed method.  相似文献   
348.
For developing telematics devices, traditional development methods include the unit function test, compatibility test and T-Car, which have some limitations. Telematics devices have various functions that require accounting for the interactions among three major elements of automotive electronics: the vehicle, the device unit and driver. The KAAS (KATECH Advanced Automotive Simulator) system is a virtual-reality-based test environment designed to test and analyze the three elements in one place. One of the difficult functions when constructing such VR (Virtual Reality)-based telematics test environment is to develop a test method for the LBS (Location-Based Service) function such as a car navigation demanding the GPS (Global Positioning System) satellite signals because KAAS is in a fixed laboratory. To overcome these problems, a real-time GPS simulation system, which can be integrated with KAAS, is needed because the location of the vehicle in virtual space is determined purely by the driver’s personal intention while driving virtually. This paper presents new concepts needed to construct a VR-based telematics test environment to generate a GPS RF signal, which reflects the continuously changing vehicle location during virtual driving in real-time. To construct this system, the coordinate transform must be conducted from a rectangular coordinate system that is compatible with a virtual 3D DB that is used to construct a 3D image for KAAS using a WGS84 and a longitude-latitude coordinate system compatible with a GPS simulator. Moreover, the real-time HILS (Hardware In Loop Simulation) systems and the CDMA (Code Division Multiple Access) simulation system are developed to evaluate telematics devices. Finally, we show its applications and results.  相似文献   
349.
收敛约束法理论为隧道支撑设计之简化分析方法。使用隧道收敛计测资料,借以建立隧道掘进效应函数,并依据地盘与支撑系统之组成律模式,推导在静水应力状态下圆形隧道开挖支撑互制行为之解析解。采用约束损失之递增方法,利用简易试算表工具,提出模拟隧道开挖支撑非线性行为之外显分析。经由外显分析与有限元素分析之比较结果显示,相关收敛约束曲线均呈现一致的趋势。外显分析法提供了模拟隧道开挖支撑互制行为之简易且直接的计算分析方法,收敛约束法理论为隧道支撑设计之简化分析方法。使用隧道收敛计测资料,借以建立隧道掘进效应函数,并依据地盘与支撑系统之组成律模式,推导在静水应力状态下圆形隧道开挖支撑互制行为之解析解。采用约束损失之递增方法,利用简易试算表工具,提出模拟隧道开挖支撑非线性行为之外显分析。经由外显分析与有限元素分析之比较结果显示,相关收敛约束曲线均呈现一致的趋势。外显分析法提供了模拟隧道开挖支撑互制行为之简易且直接的计算分析方法。  相似文献   
350.
Critical responses are frequently detected at the coupled torsional beam axle (CTBA) of a lightweight vehicle. However, the freedom to modify the design of the axle shaft is limited because the suspension system must satisfy other vehicle requirements such as steering performance. Conventional sensitivity analysis cannot provide practical information about the resonant behavior because the analysis only identifies the contribution of the axle shaft to the behavior. This paper presents a novel sensitivity analysis based on transmissibility ratios (TRs). The vehicle components other than the axle shaft that can be modified to control the critical spectra are identified using acceleration responses. A multi-body vehicle model is constructed to simulate the proposed design modifications, and the simulation results show that the vibration of the axle shaft is considerably reduced by the modifications. Because the TRs on the CTBA are effectively minimized through the modified design strategy, the resonant response from the axle shaft can be controlled efficiently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号