首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1840篇
  免费   24篇
公路运输   534篇
综合类   316篇
水路运输   431篇
铁路运输   171篇
综合运输   412篇
  2023年   26篇
  2022年   69篇
  2021年   31篇
  2020年   18篇
  2019年   15篇
  2018年   92篇
  2017年   32篇
  2016年   67篇
  2015年   36篇
  2014年   85篇
  2013年   168篇
  2012年   110篇
  2011年   152篇
  2010年   130篇
  2009年   136篇
  2008年   114篇
  2007年   98篇
  2006年   93篇
  2005年   78篇
  2004年   23篇
  2003年   10篇
  2002年   14篇
  2001年   22篇
  2000年   23篇
  1999年   15篇
  1998年   22篇
  1997年   11篇
  1996年   12篇
  1995年   22篇
  1994年   8篇
  1993年   16篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   13篇
  1984年   8篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   7篇
  1979年   5篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1973年   5篇
排序方式: 共有1864条查询结果,搜索用时 15 毫秒
951.
This paper presents a system to identify road and non-road regions from monocular color images of paved and unpaved roads. Despite being a single object, the road in these images is subject to large changes in appearance due to environmental effects and track materials. This condition has challenged the practical application of road identification. The proposed system combines random forest with color correlogram to overcome such conditions and offers a classifier for road and non-road regions in traffic images. As a color feature, the color correlogram depicts the spatial correlation of color changes in an image. Using random forest, road identification is formulated as a learning paradigm. The combined effects of color correlograms and random forest create a robust system capable of identifying roads even in variable situations in real time. This combination is more effective than other combinations, such as a color histogram plus random forest, a color correlogram plus neural network, or a color histogram plus neural network.  相似文献   
952.
In this study, a combined system consisting of a heat pump and a PTC heater was developed as a heating unit in electric vehicles. The system consists of a compressor, a condenser, an evaporator, an expansion device and a PTC heater. Experiments were conducted to examine the steady-state performance and dynamic characteristics of this system. The compressor speed, outdoor air inlet temperature, and indoor air inlet temperature were varied, and the performance of the system was experimentally investigated. The heating capacity, compressor power consumption and COP were obtained. Warm-up experiments were performed to investigate the dynamic characteristics of the system with a heat load of 1.5 kW in the indoor chamber. For the heat pump system, the PTC heater and the combined system, the heating performance and efficiency were investigated to determine an optimal control method. The results of this study agree well with the experimental results available in literature. This study provides experimental data of good quality for heating system design and the development of electric vehicles.  相似文献   
953.
The urban tram introduced recently has a low-floor structure for the convenience of passengers getting on and off. To adjust the low-floor level and improve performance on curves, most low-floor trams have IRWs (independently rotating wheels) with no central axle between the two wheels. Eliminating the central axle, however, creates several inherent problems, such as insufficient guiding force and excessive wear. To analyze these problems, a new analytical model is described in this paper to describe the dynamic characteristics of IRWs more precisely. This analytical model is developed to consider the effects of longitudinal creep in particular, which have been ignored in conventional analytical models of IRWs. In addition, a running stability analysis based on the newly developed analytical model is conducted to compare the critical speeds of IRW-axle vehicles and rigid-axle vehicles. The dynamic characteristics of an initial disturbance are compared to verify that the analytical model is effective in expressing the dynamic characteristics of IRWs.  相似文献   
954.
The first firing cycle is very important during cold-start for all types of spark ignition engines. In addition, the combustion characteristics of the first firing cycle affect combustion and emissions in the following cycles. However, the first-cycle fuel-air mixing, combustion and emissions generation within the cylinder of a two-stage direct-injection (TSDI) engine during cold start is not completely understood. Based on the total stoichiometric air-fuel ratio and local richer mixture startup strategy, the first-cycle firing and combustion characteristic at cold start were investigated in a two-stage direct injection (TSDI) gasoline engine. In addition, the effects of the first injection timing, second injection timing, 1st and 2nd fuel injection proportion and total excess air ratio on the in-cylinder pressure, heat release rate and accumulated heat release were analyzed on the basis of a cycle-by-cycle analysis. It is shown that a larger 2nd fuel injection amount and later 2nd injection timing are more beneficial to the firing of the first cycle in the case of a total excess air ratio of 1.0. The optimum 1st and 2nd injection timing fuel injection proportions are 120°CA ATDC during the intake stroke, 60°CA BTDC during the compression stroke and 1:1. In addition, the firing boundary is a 2nd injection timing later than 90°CA BTDC during the compression stroke in the case of the 1st injection timing from 60°CA to 180°CA ATDC during an intake stroke and involves a 1st and 2nd fuel injection proportion of 1:1 and an excess air ratio of 1.0. The study provides a detailed understanding of cold-start combustion characteristics and a guide for optimizing the reliable first-cycle firing at cold start.  相似文献   
955.
Tripod constant velocity (TCV) joints are common components in automotive and mechanical applications. The benefits of the TCV joint are its high plunge capacity and high torque capacity. During power transmission, the friction inside the joint generates an axial force according to the kinematics. This force causes noise and vibration problems. In this study, a simplified multi-body dynamic model based on a phenomenological TCV joint friction model is developed. This model considers the generated axial force (GAF) of a TCV joint with different lubricate conditions. The efficiency and accuracy are verified by comparison with other prediction models and experiments. Thus, this model can be used to design and control the manufacture process of TCV joints.  相似文献   
956.
This study aims to investigate the combustion characteristics of mixed fuel of liquefied propane gas (LPG) and biodiesel under compression ignition (CI) in an effort to develop highly efficient and environmentally friendly mixed fuelbased CI engines. Although LPG fuel is known to be eco-friendly due to its low CO2 emission, LPG has not yet been widely applied for highly efficient CI engines because of its low cetane number and is usually mixed with other types of CI-friendly fuels. In this study, a number of experiments were prepared with a constant volume chamber (CVC) setup to understand the fundamental combustion characteristics of mixed fuel with LPG and biodiesel in two weight-based ratios and exhaust gas recirculation (EGR) conditions. The results from the current investigations verify the applicability of mixed fuel of LPG and biodiesel in CI engines with a carefully designed combustion control strategy that maximizes the benefits of the mixed fuel. Based on the results of this study, ignition is improved by increasing the cetane value by using higher blending ratios of biodiesel. As the blending ratios of biodiesel increased, CO and HC decreased and CO2 and NOx increases.  相似文献   
957.
Ever increasing demand for the petroleum is causing faster than expected oil shortages in the supply and demand balance around the world and furthermore, many specialists in the field of oil production such as Association for the Study of Peak Oil and World Energy Outlook are claiming that the petroleum is around the peak of its production (Figure 1). Such shortage made the greatest impact on the gasoline price hikes at the gas pump and thus, this impact was felt by the consumers severely and became the greatest motivation for automotive industries to strive to pioneer the researches for the next generation vehicle configurations ranging from HEV, PHEV, Pure EV to FCHEV (collectively noted as xEV). While the great deal of researches has been carried over the last few decades, it is still far from mass productions for consumer use except for the HEV mainly due to the high cost involved with other types of xEV configurations. Therefore, it is critical to design the vehicle to maximize the use of each component at its highest point regardless of any cost scenarios and it is clear that this optimization can only be achieved through the accurate energy balance simulation for a specific target vehicle prior to the actual hardware implementation. In this paper, it is our intention to introduce modified dynamic battery modeling scheme that would provide a more accurate way of simulating the battery behavior when used in the vehicle energy simulation system. Starting from a typical battery dynamic model to predict the voltage given an imposed current request, we have introduced a new scheme to establish the relationship between the voltage and the power (rather than the current) requested by the vehicle simulation system. The proposed scheme handles the power request from the vehicle simulator considering the dynamic battery characteristics and in turn, contributes to the better estimation of the current integrated energy usage and battery SOC level in the given battery dynamic system used in the vehicle energy simulation system.  相似文献   
958.
The fuel economy of a fuel cell hybrid vehicle (FCHV) depends on its power management strategy because the strategy determines the power split between the power sources. Several types of power management strategies have been developed to improve the fuel economy of FCHVs. This paper proposes an optimal control scheme based on the Minimum Principle. This optimal control provides the necessary optimality conditions that minimize the fuel consumption and optimize the power distribution between the fuel cell system (FCS) and the battery during driving. In this optimal control, the final battery state of charge (SOC) and the fuel consumption have an approximately proportional relationship. This relationship is expressed by a linear line, and this line is defined as the optimal line in this research. The optimal lines for different vehicle masses and different driving cycles are obtained and compared. This research presents a new method of fuel economy evaluation. The fuel economy of other power management strategies can be evaluated based on the optimal lines. A rule-based power management strategy is introduced, and its fuel economy is evaluated by the optimal line.  相似文献   
959.
We formulate a game-theoretic model of a concession agreement between a government and a private party, a concessionaire, who has to engage a set of service providers as part of the operating responsibilities. We use the model to examine the importance of a government's tax policy to induce private investments in transportation infrastructure. Our analysis brings to fore insights that are useful in the design of partnership agreements, such as the importance of early and binding government commitments to ensure stable partnerships, and thus, successful projects. Our analysis shows that these strong commitments are even more critical in situations where the success of the partnership requires participation of additional, self-interested parties, such as specialized service providers. Finally, we consider variations of the model where government preferences are explicitly captured, and where the returns from the fixed cost portion of the concessionaire's investment are exempt from taxes. We show that both variations can lead to outcomes where the concessionaire's tax burden is shifted to the service providers. This flexibility can be critical in the design of partnership agreements for (high-risk or highly specialized transportation) projects where additional incentives may be needed to induce private party participation.  相似文献   
960.
以某PC斜拉桥维修工程为背景,用GQJS软件进行斜拉桥加固维修施工控制的模拟计算分析并优选了调索方案.在完成索拉力支座恢复、粘贴钢板、张拉体外预应力补强钢筋等维修加固后,主要提出了摆索拉力支座恢复后索力调整的施工控制目标和安全措施,介绍了摆索拉力支座恢复后的索力调整的过程和方法,以及结构在运营阶段中的计算分析结果.施工监测结果表明,所有调索步骤完成后,主梁线形调整最终达到了预期目标,调整后的索力更趋于均匀,调整过程兼顾了主梁混凝土应力、塔位以及摆索拉力的变化.说明了调索方案的施工控制达到了预期目标,同时保证了结构的安全.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号