首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   10篇
公路运输   453篇
综合类   60篇
水路运输   466篇
铁路运输   42篇
综合运输   433篇
  2023年   4篇
  2022年   20篇
  2021年   13篇
  2020年   12篇
  2019年   13篇
  2018年   35篇
  2017年   43篇
  2016年   71篇
  2015年   25篇
  2014年   51篇
  2013年   215篇
  2012年   77篇
  2011年   84篇
  2010年   66篇
  2009年   82篇
  2008年   65篇
  2007年   56篇
  2006年   34篇
  2005年   32篇
  2004年   22篇
  2003年   23篇
  2002年   25篇
  2001年   22篇
  2000年   29篇
  1999年   20篇
  1998年   23篇
  1997年   26篇
  1996年   25篇
  1995年   41篇
  1994年   7篇
  1993年   22篇
  1992年   15篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1980年   12篇
  1979年   14篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   7篇
  1972年   4篇
排序方式: 共有1454条查询结果,搜索用时 171 毫秒
371.
This paper investigates the effects of the track geometry irregularities on the wheel–rail dynamic interactions and the rail fatigue initiation through the application of the Dang Van criterion, that supposes an elastic shakedown of the structure. The irregularities are modelled, using experimental data, as a stochastic field which is representative of the considered railway network. The tracks thus generated are introduced as the input of a railway dynamics software to characterise the stochastic contact patch and the parameters on which it depends: contact forces and wheelset–rail relative position. A variance-based global sensitivity analysis is performed on quantities of interest representative of the dynamic behaviour of the system, with respect to the stochastic geometry irregularities and for different curve radius classes and operating conditions. The estimation of the internal stresses and the fatigue index being more time-consuming than the dynamical simulations, the sensitivity analysis is performed through a metamodel, whose input parameters are the wheel–rail relative position and velocity. The coefficient of variation of the number of fatigue cycles, when the simulations are performed with random geometry irregularities, varies between 0.13 and 0.28. In a large radius curve, the most influent irregularity is the horizontal curvature, while, in a tight curve, the gauge becomes more important.  相似文献   
372.
Signalized intersections are one of the key elements that play a vital role at road networks. The efficiency and safety levels of intersections can affect the operational performance of the whole system. In general, turning traffic, especially median-turning, has always been considered as the most problematic movement in the operation of intersections. This becomes more critical with high turning demand where exclusive turning lanes (single or double) can be assigned to provide larger capacities for these movements and to reduce conflicts with through traffic. However, improper treatment of median-turn lanes could create cross-maneuvering behavior which may limit the expected increase in capacity and create safety issues. Median-turning lane markings are commonly provided at intersections in Japan to guide drivers while turning which is expected to reduce the conflicts among turning traffic. Meanwhile, in the Philippines, exclusive median-turn lanes are installed at intersections without proper treatment which may contribute to the low mobility and safety levels. Therefore, this study evaluated the impact of inside intersection lane markings on the operation of median-turn lanes in terms of mobility and safety. The vehicle maneuver, speed and interactions between the turning traffic were utilized as essential components for the assessment. The empirical analysis shows that conflicting trajectories were present on double turn lanes without median-turn lane markings in the Philippines, which resulted to serious conflicts among the turning vehicles and negatively influenced the turning speed and saturation flow rate of the turn lanes. On the other hand, the turn lane markings in Japan, provided a positive impact to mobility and safety of the turning lanes. Moreover, it was also found that the geometric characteristics and traffic signal phasing scheme highly affects the capacity and safety condition of signalized intersections.  相似文献   
373.
Friction within the wheel–rail contact highly influences all aspects of vehicle–track interaction. Models describing this frictional behaviour are of high relevance, for example, for reliable predictions on drive train dynamics. It has been shown by experiments, that the friction at a certain position on rail is not describable by only one number for the coefficient of friction. Beside the contact conditions (existence of liquids, solid third bodies, etc.) the vehicle speed, normal loading and contact geometry are further influencing factors. State-of-the-art models are not able to account for this sufficiently. Thus, an Extended-Creep-Force-Model was developed taking into account effects from third body layers. This model is able to describe all considered effects. In this way, a significant improvement of the prediction quality with respect to all aspects of vehicle–track interaction is expected.  相似文献   
374.
This paper presents an experimental study that involves an application of the Taguchi method and grey relational analysis to determine the optimum factor level to obtain optimum multiple-performance characteristics of a diesel engine run with different low-percentage thumba biodiesel-diesel blends. Four factors, namely, low-percentage thumba biodiesel-diesel blend, compression ratio, nozzle opening pressure and injection timing were each considered at three levels. An L9 orthogonal array was used to collect data for various engine performance- and emission-related responses under different engine loads. The signal-to-noise (S/N) ratio and grey relational analysis were used for data analysis. The results of the study revealed that the combination of a blend consisting of 30% thumba biodiesel (B30), a compression ratio of 14, a nozzle opening pressure of 250 bar and an injection timing of 20° produces maximum multiple performance of a diesel engine with minimum multiple emissions from the engine.  相似文献   
375.
An idle speed engine model has been proposed and applied for the development of an idle speed controller for a 125 cc two wheeler spark ignition engine. The procedure uses the measured Indicated Mean Effective Pressure (IMEP) at different speeds at a constant fuel rate and throttle position obtained by varying the spark timing. At idling conditions, IMEP corresponds to the friction mean effective pressure. A retardation test was conducted to determine the moment of inertia of the engine. Using these data, a model for simulating the idle speed fluctuations, when there are unknown torque disturbances, was developed. This model was successfully applied to the development of a closed loop idle speed controller based on spark timing. The controller was then implemented on a dSPACE Micro Autobox on the actual engine. The Proportional Derivative Integral (PID) controller parameters obtained from the model were found to match fairly well with the experimental values, indicating the usefulness of the developed idle speed model. Finally, the optimized idle speed control algorithm was embedded in and successfully demonstrated with an in-house built, low cost engine management system (EMS) specifically designed for two-wheeler applications.  相似文献   
376.
This paper describes an optimal vehicle speed controller that uses torque-based control concepts. The controller design was divided into two steps: first, for a given vehicle speed trajectory, the engine torque demand was determined; in the second stage, a torque controller was implemented to track this torque demand. The torque demand was determined by a primary component and a correction component. The primary component was determined by solving an off-line optimization problem, and the correction component was added to compensate for the error caused by the off-line optimization. A modelbased proportional-integral (PI) feedback torque controller was employed to realize the engine torque tracking. Simulation results generated by a benchmark simulator were given to demonstrate performance of the optimal vehicle speed controller and a conventional PI speed controller that was included for comparison.  相似文献   
377.
In an HLA (hydraulic lash adjuster) piston engine, “pump up” can occur when a valve is opened by the HLA when it should be closed. HLA pump up is more frequently encountered with exhaust valves than with intake valves. When HLA pump up in occurs in the exhaust valve, exhaust gas from the exhaust manifold enters the cylinder on the intake stroke, and fresh air-fuel mixture exits through the exhaust manifold on the compression stroke and is burned in the catalyst, causing partial burning, misfire, catalyst melting and power drop. HLA pump up occurs when the force on the valve from the HLA is higher than the force on the HLA from the valve. HLA pump up is related to design parameters, such as oil pressure, rocker ratio, spring load, spring surge, and both intake and exhaust valve timing. In this study, valve lift and load on a roller finger follower were measured at varying engine firing conditions to evaluate HLA pump up. The results indicated that effective measures to reduce HLA pump up include a higher rocker ratio, a lower oil supply pressure to the HLA, a higher spring installation load and a lower spring surge.  相似文献   
378.
Gerotor pumps are widely used in the automotive industry for engine oil lubrication, due to their high volumetric efficiency and smooth pumping action. In many cases, the lubricating oil from the sump is mixed with contaminants, such as dust and tiny solid particles, or becomes thickened, due to aging. These problems will lead to critical situations, such as increased noise, enhanced wear and erosion, and poor lubrication of the engine. These critical situations were studied by conducting a detailed CFD integrated investigation on a gerotor pump’s performance at different operating conditions in three phases, and the results are presented in this paper. In first phase, a CFD model of a gerotor pump was developed with a dynamic mesh for the rotary movement of both the inner and outer rotors. The effects on pump flow rate of important parameters, such as rotor speed, fluid viscosity and number of ports, were simulated using non-contaminated oil at room temperature and an elevated temperature of 140oC. The relationship between flow rate and pressure at different rotor speeds was predicted and validated with test data for further parametric study. The pressure ripples at different time steps were measured at different angular positions of the rotors to examine the model accuracy. It was found that the flow rate increased and pressure pulsation, as well as flow recirculation, was reduced when ports were added to the cover plate. A suction pipe with a strainer was added for the second phase to capture the undesired changes in flow behavior, such as cavitation, which is caused by negative suction at the inlet region of pump. A suitable size for the inlet suction pipe for this pump was chosen after performing tests to characterize the flow behavior with single and double ports. Next, the relationship between pressure drop and strainer porosity was determined using different porosity values for the strainers. In the final phase, oil with different concentrations of solids was simulated to measure the effect of solid particles on flow rates and pressure losses. It was observed that the intensity of the recirculation was reduced at the suction end at the higher concentration of 0.04%, due to particle inertial effects. It was also found that particle size distribution affected the overall efficiency and pressure head of the pump.  相似文献   
379.
Breakup modeling of a liquid jet in cross flow   总被引:3,自引:0,他引:3  
We propose a novel breakup model to simulate the catastrophic breakup regime in a supersonic cross flow. A developed model has been extended from an existing Kelvin-Helmholtz/Rayleigh-Taylor (K-H/R-T) hybrid model. A new mass reduction rate equation, which has critical effects on overall spray structure, is successfully adopted, and the breakup length, which is an important parameter in existing model, is replaced by the breakup initiation time. Measured data from the supersonic wind tunnel with a dimension of 762×152×127 mm was employed to validate the newly developed breakup model. A nonaerated injector with an orifice diameter of 0.5 mm is used to inject water into a supersonic flow prescribed by the momentum flux ratio of the liquid jet to free stream air, q 0 . The conservation-element and solution-element (CE/SE) method, a novel numerical framework for the general conservation law, is applied to simulate the supersonic compressible flow. The spray penetration height and average droplet size along with a spray penetration axis are quantitatively compared with data. The shock train flow structures induced by the presence of a liquid jet are further discussed.  相似文献   
380.
The inception of porpoising is theoretically predicted for planing vessels. Two different approaches are presented. First, a linear stability analysis is applied to find the porpoising limits while the hydrodynamic coefficients, i.e. added mass and damping coefficients, are determined by either a simplified method or a numerical method. Another approach is to seek the porpoising limits by performing nonlinear time domain simulations. Either the simplified method or the numerical method is used in the simulations. In the numerical method, a 2D+t theory together with a boundary element method is employed. The trim angle limits for porpoising are determined by changing the longitudinal position of the centre of gravity (COG) of the vessel and keeping the forward speed constant. The predicted porpoising limits are compared with Day and Haag’s (Planing boat porpoising, Thesis, Webb Institute of Naval Architecture, 1952) experimental results. The influences of parameters such as the load coefficient, the vertical position of COG and the radius of gyration of the ship are investigated by varying those parameters in the linear stability analysis. In the nonlinear time-domain simulations, by trying different longitudinal position of COG, one can find the critical trim angle when the porpoising commences. The obtained trim limits agree generally with those predicted by the linear stability analysis. Bounded oscillations for the unstable cases near the critical trim angle can be seen in the time-domain simulations due to the nonlinear effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号