首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   5篇
公路运输   2篇
综合运输   12篇
  2020年   1篇
  2019年   2篇
  2016年   4篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2007年   2篇
  2003年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
Previous methods to calculate the minimum number of traffic micro‐simulation runs do not consider multiple measures of performance simultaneously at an overall confidence level, which can lead to unreliable simulation outputs. This paper describes new methodologies for calculating the minimum number of traffic micro‐simulation runs for multivariate estimates at an overall confidence level. Simultaneous confidence intervals obtained from multiple comparisons in statistical theory such as the Bonferroni inequality and simultaneous confidence interval method are used to estimate multiple measures of performance with allowable errors at an overall confidence level. Measures of performance can be means and standard deviations. Results of numerical analysis based on an example corridor suggest that the proposed methods provide improved means of assessing statistical accuracy of multiple measures of performance. Results also indicate that the minimum number of runs is influenced by not only the sample size issue but also the complexity of the traffic system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
12.
Heavy vehicles influence general traffic in many different ways compared with passenger vehicles, and this may result in different levels of traffic instability. Increases in the number and proportion of heavy vehicles in the traffic stream will therefore result in different traffic flow conditions. This research initially outlines the different car‐following behaviour of drivers in congested heterogeneous traffic conditions indicating the necessity for developing a car‐following model, which includes these differences. A psychophysical car‐following model, similar in form to Weideman's car‐following model, was developed. Due to the complexity of the developed model, the calibration of the model was undertaken using a particle swarm optimisation algorithm with the data recorded under congested traffic conditions. This was then incorporated into a traffic microsimulation model. The results showed that the car‐following perceptual thresholds and thus action points of drivers differ based on their vehicle and the lead vehicle types. The inclusion of the heavy vehicles in the model showed significant impacts on the traffic dynamic and interactions amongst different vehicles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
13.
Despite widespread growth in on-road public transport priority schemes, road management authorities have few tools to evaluate the impacts of these schemes on all road users. This paper describes a methodology developed in Melbourne, Australia to assist the road management authority, VicRoads, evaluate trade-offs in the use of its limited road-space for new bus and tram priority projects. The approach employs traffic micro-simulation modelling to assess road-space re-allocation impacts, travel behaviour modelling to assess changes in travel patterns and a social cost benefit framework to evaluate impacts. The evaluation considers a comprehensive range of impacts including the environmental benefits of improved public transport services. Impacts on public transport reliability improvements are also considered. Although improved bus and tram reliability is a major rationale for traffic priority its use in previous evaluations is rare. The paper critiques previous approaches, describes the proposed method and explores some of the results found in its application. A major finding is that despite a more comprehensive approach to measuring the benefits of bus and tram priority, road-space reallocation is difficult to economically justify in road networks where public transport usage is low and car usage high. Strategies involving the balanced deployment of bus and tram priority measures where the allocation of time and space to PT minimises negative traffic impacts is shown to improve the overall management of road-space. A discussion of the approach is also provided including suggestions for further methodology development.
Bill YoungEmail:
  相似文献   
14.
This work conducts a comprehensive investigation of traffic behavior and characteristics during freeway ramp merging under congested traffic conditions. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristics of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year study is undertaken to investigate traffic behavior and characteristics during the merging process under congested situations. Extensive traffic data capturing a wide range of traffic and geometric information were collected using detectors, videotaping, and surveys at eight interchanges in Tokyo Metropolitan Expressway. Maximum discharged flow rate from the head of the queue at merging sections in conjunction with traffic and geometric characteristics were analyzed. In addition, lane changing maneuver with respect to the freeway and ramp traffic behaviors were examined. It is believed that this study provides a thorough understanding of the freeway ramp merging dynamics. In addition, it forms a comprehensive database for the development and implementation of congestion management techniques at merging sections utilizing Intelligent Transportation System.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号