首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1886篇
  免费   5篇
公路运输   190篇
综合类   657篇
水路运输   662篇
铁路运输   1篇
综合运输   381篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   334篇
  2017年   290篇
  2016年   250篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   56篇
  2011年   205篇
  2010年   214篇
  2009年   45篇
  2008年   177篇
  2007年   121篇
  2006年   2篇
  2005年   50篇
  2004年   45篇
  2003年   55篇
  2002年   16篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
排序方式: 共有1891条查询结果,搜索用时 15 毫秒
961.
Lean NOx trap (LNT) catalyst has been used to reduce NOx emissions from diesel engines. The LNT absorbs NOx in lean condition and discharges N2 by reducing NOx in rich conditions. Thus, it is necessary to make exhaust gas lean or rich conditions for controlling LNT system. For making a rich condition, a secondary injector was adopted to inject a diesel fuel into the exhaust pipe. In the case of secondary injector, the behavior of spray is easily affected by high temperature (i.e., 250 ~ 350 °C) occurred in the exhaust manifold. Therefore, it is needed to investigate the spray behavior of diesel fuel injected into an exhaust manifold, as well as the conversion characteristics for a lean NOx trap of a diesel engine with LNT catalyst. The characteristics of exhaust emissions in NEDC (New European Driving Cycle) mode were analyzed and spray behaviors were visualized in various exhaust gas conditions. The results show that as the exhaust gas mass flow increases, the spray cone angle becomes broad and the fuel is directed to the flow field. Besides, the cone angle of spray is decreased by centrifugal force caused in exhaust gas flow field. In addition, the effects of nozzle installation degree, injection quantity, and exhaust gas flow on NOx conversion performance were clarified.  相似文献   
962.
Steering and suspension handle the direction of a vehicle according to the driver’s intentions and control the disturbance from the road surface while supporting the vehicle body. The static and dynamic characteristics of two systems are critical factors for the ride comfort and the directional stability. In the layout stage, the hard points of steering and suspension systems are determined. In the next design stage, the detailed design of the system, including gearboxes, springs, shock absorbers, and control links, is carried out. While the optimal hard points of a suspension are determined at the precedent design, interference with other peripheral components should be carefully examined in the detailed design process. In the case of the design point change should be made to avoid the interference, subsequent position and shape changes of the link mechanism are required. Therefore, there is a need to examine the optimization of suspension compliance characteristics with chassis design changes and the durability performance of the modified design. This study proposes an integrated analysis method for the design optimization and the durability evaluation of such optimized design specifications of the rear independent suspension for a military vehicle.  相似文献   
963.
This paper presents a new control scheme for lateral collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of lateral CA systems. The first contribution is a new lane-changing model based on vehicle edge turning trajectory (VETT) to make vehicle adapt to different driving roads and conform to drivers’ characteristic, in addition to ensure vehicle steering safety. The second contribution is vehicle semi-uncertainty dynamic model (SUDM), which is SISO model. The problem of stability performance without the information on sideslip angle is solved by the proposed SUDM. Based on the proposed VETT and SUDM, the lateral CA system can be designed with H robust controller to restrain the effect of uncertainties resulting from parameter perturbation and lateral wind disturbance. Single and mixed driving cycles simulation experiments are carried out with CarSim to demonstrate the effectiveness in control scheme, simplicity in structure for lateral CA system based on the proposed VETT and SUDM.  相似文献   
964.
This paper is on the design of cooperative adaptive cruise control systems for automated driving of platoons of vehicles in the longitudinal direction. Longitudinal models of vehicles with simple dynamics, an uncertain first order time constant and vehicle to vehicle communication with a communication delay are used in the vehicle modeling. A robust parameter space approach is developed and applied to the design of the cooperative adaptive cruise control system. D-stability is chosen as the robust performance goal and the feedback PD controller is designed in controller parameter space to achieve this D-stability goal for a range of possible longitudinal dynamics time constants and different values of time gap. Preceding vehicle acceleration is sent to the ego vehicle using vehicle to vehicle communication and a feedforward controller is used in this inter-vehicle loop to improve performance. Simulation results of an eight vehicle platoon of heterogeneous vehicles are presented and evaluated to demonstrate the efficiency of the proposed design method. Also, the proposed method is compared with a benchmark controller and the feedback only controller. Time gap regulation and string stability are used to assess performance and the effect of the vehicle to vehicle communication frequency on control system performance is also investigated.  相似文献   
965.
For highly automated driving in urban regions it is essential to know the precise position of the car. Furthermore it is important to understand the surrounding context in complex situations, e.g. multilane crossings and turn lanes. To understand those situations there is not only the task to detect the lane border, but to detect the painted information inside the lane. The paper is facing and evaluating two methods to classify this additional lane information. Therefore the images from five cameras mounted around the car are used. Four of them with fisheye lenses. The methods have in common, that the input images are transformed into a bird view projection. First introduced method is to extract contours from the transformed images and collect geometrical features and Fourier coefficients. The second introduced way, is to calculate histograms of oriented gradients and use it as input for the classification step. Both classification approaches are implemented and evaluated as multiclass and single class detectors for each arrow type. Furthermore, the classification results from a support vector machine and random forest were faced for this classification problem. The results from the multiclass detectors are evaluated and presented in form of confusion matrices. With the introduced approaches a high detection confidence could be achieved, proofed with validation datasets and in practical use.  相似文献   
966.
The objective of this study is to investigate a nonlinear model-based multivariable (MIMO, Multi Input Multi Output) technique to decouple actuators interaction and to reduce the calibration effort, while increasing control performances, above all in transient conditions, and robustness with respect to model uncertainties and system parameter variations. The presented control technique is based on the development of a nonlinear dynamical physical model of the diesel air and charging system. Feedback Linearization control is then applied to decouple actuators’ interactions and compensate for nonlinearities. A new set of virtual inputs are defined inverting the system differential equations. Relation among the new virtual inputs and the outputs is purely linear and decoupled, meaning that each virtual input affects linearly only one output. Moreover, a linear control block is added to guarantee transient and steady state performances and closed loop robustness. The proposed control approach has been validated through small diesel engine dyno and vehicle activities. Transient test bench maneuvers show that the control is able to coordinate the actuators in order to fulfill the targets and to guarantee similar performances in different operating points. In addition the robustness to environmental changes has been demonstrated by vehicle tests at different ambient conditions.  相似文献   
967.
Motivated by the development of high-precision digital maps for advanced driver assistance system (ADAS) in recent years, this study provides a new approach to solve the problems of the conventional automatic transmission vehicle travelling on sloping roads. Based on vehicle dynamics, shift problems on hilly roads are analyzed. A novel intelligent shift strategy is proposed, which consists of a dynamic shift schedule for the uphill, a safety shift schedule for the downhill, and a comprehensive economical shift schedule for the gentle slopes. A set of driver-in-loop co-simulation tests was conducted in a driving simulator that is equipped with a MATLAB/Simulink dynamics simulation platform. The test results verified the effectiveness of the new intelligent shift strategy. With the road information provided by a high-precision digital map, busy shifting can be eliminated, and improved dynamic performance can be achieved for a vehicle travelling on the uphill roads; undesired upshift can be prevented, and engine traction resistance can be used to relieve the load of braking system when a vehicle travelling on the downhill roads; also, fuel consumption can be reduced for a vehicle travelling on a gently sloped road. Consequently, this novel intelligent shift strategy offers a reliable and effective solution for improving a vehicle’s driving performance on a hilly road.  相似文献   
968.
One important parameter influencing mixture formation and spray/wall interaction within engines is the geometry of the nozzle. In contrast to Diesel nozzles, the influence of the orifice geometry on spray formation has hardly be investigated for gasoline nozzles. In order to demonstrate the potential of adjusting the nozzle geometry of a modern GDI nozzle, we compare two six-hole, high-pressure nozzles with an identical structure, but different rounding radius of the orifice hole-inlet and different orifice hole-geometries: nozzle A with a rounded inlet and an orifice length to diameter ratio of 3/2 and nozzle B with a sharp inlet and an orifice length to diameter ratio of 1. In a first measurement campaign the spray formation is visualized using high-speed shadowgraphy imaging. The results show differences in spray angle and penetration depth. In a second measurement campaign we examine the spray/wall interaction and wall film formation by means of infrared thermography. The thermography measurements indicate that the geometry of nozzle B produces sprays with beneficial characteristics. This is very important for a clean combustion process and a decrease of soot emissions.  相似文献   
969.
This paper presents a regenerative anti-lock braking system control method with road detection capability. The aim of the proposed methodology is to improve electric vehicle safety and energy economy during braking maneuvers. Vehicle body longitudinal deceleration is used to estimate a road surface. Based on the estimation results, the controller generates an appropriate braking torque to keep an optimal for various road surfaces wheel slip and to regenerate for a given motor the maximum possible amount of energy during vehicle deceleration. A fuzzy logic controller is applied to fulfill the task. The control method is tested on a four in-wheel-motor drive sport utility electric vehicle model. The model is constructed and parametrized according to the specifications provided by the vehicle manufacturer. The simulation results conducted on different road surfaces, including dry, wet and icy, are introduced.  相似文献   
970.
Range extender modules are one option to compensate for short drive ranges of electric vehicles. The close interaction of combustion engine and generator poses new challenges in development. A key requirement for range extender systems is to be light and virtually imperceptible in operation. High-speed electrical machines aim at increasing power density. However, their introduction in a range extender requires a gearbox. The combustion engine torque fluctuations can lead to rattle in the gearbox. The rattle can be overcome by a dual mass flywheel. An interdisciplinary model is developed and used to analyse three different range extender systems: one with a low speed generator without gearbox, one with a high-speed generator, and one with a high-speed generator and a dual mass flywheel. The efficiency was found to be higher for the system with a low speed generator, whereas the power density and the costs are beneficial for the high-speed concept. A dual mass flywheel eliminates the changes of torque direction in the gearbox. It reduces the speed fluctuations of the gearbox and generator by over 90 % compared to the low speed setup. But it increases rolling moment and subsequently chassis excitation compared to a setup with only a gearbox.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号