全文获取类型
收费全文 | 1886篇 |
免费 | 5篇 |
专业分类
公路运输 | 190篇 |
综合类 | 657篇 |
水路运输 | 662篇 |
铁路运输 | 1篇 |
综合运输 | 381篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2018年 | 334篇 |
2017年 | 290篇 |
2016年 | 250篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 56篇 |
2011年 | 205篇 |
2010年 | 214篇 |
2009年 | 45篇 |
2008年 | 177篇 |
2007年 | 121篇 |
2006年 | 2篇 |
2005年 | 50篇 |
2004年 | 45篇 |
2003年 | 55篇 |
2002年 | 16篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1985年 | 1篇 |
排序方式: 共有1891条查询结果,搜索用时 12 毫秒
281.
Gopindra Sivakumar Nair Sebastian Astroza Chandra R. Bhat Sara Khoeini Ram M. Pendyala 《Transportation》2018,45(6):1623-1637
Surveys of behavior could benefit from information about people’s relative ranking of choice alternatives. Rank ordered data are often collected in stated preference surveys where respondents are asked to rank hypothetical alternatives (rather than choose a single alternative) to better understand their relative preferences. Despite the widespread interest in collecting data on and modeling people’s preferences for choice alternatives, rank-ordered data are rarely collected in travel surveys and very little progress has been made in the ability to rigorously model such data and obtain reliable parameter estimates. This paper presents a rank ordered probit modeling approach that overcomes limitations associated with prior approaches in analyzing rank ordered data. The efficacy of the rank ordered probit modeling methodology is demonstrated through an application of the model to understand preferences for alternative configurations of autonomous vehicles (AV) using the 2015 Puget Sound Regional Travel Study survey data set. The methodology offers behaviorally intuitive model results with a variety of socio-economic and demographic characteristics, including age, gender, household income, education, employment and household structure, significantly influencing preference for alternative configurations of AV adoption, ownership, and shared usage. The ability to estimate rank ordered probit models offers a pathway for better utilizing rank ordered data to understand preferences and recognize that choices may not be absolute in many instances. 相似文献
282.
H. M. Abdul Aziz Nicholas N. Nagle April M. Morton Michael R. Hilliard Devin A. White Robert N. Stewart 《Transportation》2018,45(5):1207-1229
This study estimates a random parameter (mixed) logit model for active transportation (walk and bicycle) choices for work trips in the New York City (using 2010–2011 Regional Household Travel Survey Data). We explored the effects of traffic safety, walk–bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk–bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the local authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Further, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists, will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The model would be an essential tool to estimate the impact of improving traffic safety and walk–bike infrastructure which will assist in investment decision making. 相似文献
283.
Bike Share Toronto is Canada’s second largest public bike share system. It provides a unique case study as it is one of the few bike share programs located in a relatively cold North American setting, yet operates throughout the entire year. Using year-round historical trip data, this study analyzes the factors affecting Toronto’s bike share ridership. A comprehensive spatial analysis provides meaningful insights on the influences of socio-demographic attributes, land use and built environment, as well as different weather measures on bike share ridership. Empirical models also reveal significant effects of road network configuration (intersection density and spatial dispersion of stations) on bike sharing demands. The effect of bike infrastructure (bike lane, paths etc.) is also found to be crucial in increasing bike sharing demand. Temporal changes in bike share trip making behavior were also investigated using a multilevel framework. The study reveals a significant correlation between temperature, land use and bike share trip activity. The findings of the paper can be translated to guidelines with the aim of increasing bike share activity in urban centers. 相似文献
284.
This study identifies the determinants of the empty taxi trip duration (ETTD) by combining three high-resolution databases—geolocation data in New York City, geodatabase of urban planning data, and transportation facilities data. Considering the nature of duration data, hazard-based duration model is proposed to explore the relationships between causal factors and ETTD, coupling with three variations of baseline hazard distribution, i.e., Weibull distribution with heterogeneity, Weibull distribution, and log-logistic. Furthermore, the likelihood ratio test is presented to implement comparisons of three baseline hazard distributions, as well as spatial and temporal transferability of causal factors. The results show significant complementary effects by subway system and competitive effects by city bus and bicycling system, as well as significant impacts of trip length, airport trip, average annual income, and employment rate. Urban built environment, for instance, density of road, public facilities, and recreational sites and ratio of green space, has various impacts on ETTD. The elasticity estimations confirm significant spatial and temporal heterogeneity in impacts on ETTD. In addition, the analysis on elasticity also reveals the considerable impacts of severe traffic congestion on ETTD within Manhattan. The modeling can assist stakeholders in understanding empty taxi movements and measuring taxi system efficiency in urban areas. 相似文献
285.
Research on walking behavior has become increasingly more important in the field of transportation in the past decades. However, the study of the factors influencing the scheduling decisions related to walking trips and the exploration of the differences between travel modes has not been conducted yet. This paper presents a comparison of the scheduling and rescheduling decisions associated with car driving trips and walking trips by habitual car users using a data set collected in Valencia (Spain) in 2010. Bivariate probit models with sample selection are used to accommodate the influence of pre-planning on the decision to execute a travel as pre-planned or not. The explicative variables considered are: socio-economic characteristics of respondents, travel characteristics, and facets of the activity executed at origin and at destination including the scheduling decisions associated with them. The results demonstrate that a significant correlation exists between the choices of pre-planning and rescheduling for both types of trips. Whether for car driving or walking trips, the scheduling decisions associated with the activity at origin and at destination are the most important explicative factors of the trip scheduling and rescheduling decisions. However, the rescheduling of trips is mainly influenced by modifications in the activity at destination. Some interesting differences arise regarding the rescheduling decision processes between travel modes: if pre-planned, walking trips are less likely to be modified than car driving trips, showing a more rigid rescheduling behavior. 相似文献
286.
This study elaborates on the interrelation of external effects, in particular road traffic congestion and noise. An agent-based simulation framework is used to compute and internalize user-specific external congestion effects and noise exposures. The resulting user equilibrium corresponds to an approximation of the system optimum. For traffic congestion and noise, single objective optimization is compared with multiple objective optimization. The simulation-based optimization approach is applied to the real-world case study of the Greater Berlin area. The results reveal a negative correlation between congestion and noise. Nevertheless, the multiple objective optimization yields a simultaneous reduction in congestion and noise. During peak times, congestion is the more relevant external effect, whereas, during the evening, night and morning, noise is the more relevant externality. Thus, a key element for policy making is to follow a dynamic approach, i.e. to temporally change the incentives. During off-peak times, noise should be reduced by concentrating traffic flows along main roads, i.e. inner-city motorways. In contrast, during peak times, congestion is reduced by shifting transport users from the inner-city motorway to smaller roads which, however, may have an effect on other externalities. 相似文献
287.
This paper documents the efforts to operationalize the conceptual framework of MIcrosimulation Learning-based Approach to
TRansit Assignment (MILATRAS) and its component models of departure time and path choices. It presents a large-scale real-world
application, namely the multi-modal transit network of Toronto which is operated by the Toronto Transit Commission (TTC).
This large-scale network is represented by over 500 branches with more than 10,000 stops. About 332,000 passenger-agents are
modelled to represent the demand for the TTC in the AM peak period. A learning-based departure time and path choice model
was adopted using the concept of mental models for the modelling of the transit assignment problem. The choice model parameters
were calibrated such that the entropy of the simulated route loads was optimized with reference to the observed route loads,
and validated with individual choices. A Parallel Genetic Algorithm engine was used for the parameter calibration process.
The modelled route loads, based on the calibrated parameters, greatly approximate the distribution underlying the observed
loads. 75% of the exact sequence of transfer point choices were correctly predicted by the off-stop/on-stop choice mechanism.
The model predictability of the exact sequence of route transfers was about 60%. In this application, transit passengers were
assumed to plan their transit trip based on their experience with the transportation network; with no prior (or perfect) knowledge
of service performance. 相似文献
288.
This paper focuses on the evaluation processes by which decisions regarding transportation alternatives can be assisted. A multidimensional approach usually called multiple criteria decision making is required to represent the complexity of transportation policy and systems. The multiple criteria decision making techniques can be divided into two groups. The first is based on a ranking scheme approach and the second on a mathematical programming approach. A multiple objective mathematical programming procedure known as Goal Programming is presented. The authors examined the use of that procedure in real transportation problems. The results suggest that multiple objective mathematical programming techniques in general do not appear to be appropriate in transportation policy analysis involving mutually exclusive alternatives. Their use can be limited to special cases in the private sector. 相似文献
289.
A method to evaluate equitable accessibility: combining ethical theories and accessibility-based approaches 总被引:3,自引:0,他引:3
In this paper, we present the case that traditional transport appraisal methods do not sufficiently capture the social dimensions of mobility and accessibility. However, understanding this is highly relevant for policymakers to understand the impacts of their transport decisions. These dimensions include the distribution of mobility and accessibility levels over particular areas or for specific population groups, as well as how this may affect various social outcomes, including their levels of participation, social inclusion and community cohesion. In response, we propose a method to assess the socially relevant accessibility impacts (SRAIs) of policies in some of these key dimensions. The method combines the use of underlying ethics principles, more specifically the theories of egalitarianism and sufficientarianism, in combination with accessibility-based analysis and the Lorenz curve and Gini index. We then demonstrate the method in a case study example. Our suggestion is that policymakers can use these ethical perspectives to determine the equity of their policies decisions and to set minimum standards for local transport delivery. This will help them to become more confident in the development and adoption of new decision frameworks that promote accessibility over mobility and which also disaggregate the costs and benefits of transport policies over particular areas or for specific under-served population groups. 相似文献
290.
The micro-structure on hard-brittle chip materials (HBCMs) surface can produce predominant functions and features. The micro-grinding with diamond wheel micro-tip is an efficient method to machine microstructure on HBCMs. However, different HBCMs and crystal orientation may have a significant influence on the micro-grinding performance. In this paper, the micro-grinding performance along different crystal orientation of HBCMs is investigated. First, a dressed 600# diamond grinding wheel is used to micro-grind micro-structure on HBCMs. Then, the experiment of micro-grinding force test is completed. Finally, the quality of microgroove, the grinding ratio and the micro-grinding force are investigated and they are related to the crystal orientation of HBCMs. It is shown that the stronger resistance to the micro-crack propagation has the best quality of microgroove and the smallest grinding ratio. Moreover, the hardest single-crystal SiC has the best machinability and the micro-grinding force is 38.9%, 10.8% and 46.8% less than the one of sapphire, single-crystal Si and quartz glass, respectively. The direction to micro-grind easily is the crystal orientation 〈10\(\overline 1 \)0〉 for single-crystal SiC and sapphire. In addition, the micro-grinding force increases with the increase of the micro-grinding depth and feed rate and decreases with the increase of the grinding wheel speed. 相似文献