首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1237篇
  免费   7篇
公路运输   559篇
综合类   45篇
水路运输   307篇
铁路运输   25篇
综合运输   308篇
  2023年   9篇
  2022年   20篇
  2021年   9篇
  2020年   8篇
  2019年   11篇
  2018年   31篇
  2017年   39篇
  2016年   78篇
  2015年   17篇
  2014年   66篇
  2013年   189篇
  2012年   66篇
  2011年   77篇
  2010年   73篇
  2009年   57篇
  2008年   77篇
  2007年   33篇
  2006年   29篇
  2005年   24篇
  2004年   20篇
  2003年   10篇
  2002年   13篇
  2001年   17篇
  2000年   29篇
  1999年   15篇
  1998年   13篇
  1997年   17篇
  1996年   22篇
  1995年   24篇
  1994年   9篇
  1993年   16篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1244条查询结果,搜索用时 15 毫秒
11.
In this paper, a theoretical approach is suggested for predicting the structural performances and weight reduction rate of a car body with a box-type section when its material is substituted with a lightweight material for weight saving. For the material substitution design of a car body for rolling stock, bending, axial, and twisting deformations should be considered at constant stiffness and strength conditions. To compare the weight reduction effects on different material applications, some new indices were derived from a structural performance point of view. The derived indices provide good measures to estimate weight reduction by material substitution design and can be effectively applied to the conceptual design of a car body.  相似文献   
12.
The maximum principal stresses, von Mises effective stresses and principal facet stresses at the time of creep rupture were compared in uniaxial, biaxial, and triaxial stress states for AZ31 magnesium alloy. The creep rupture of this alloy was experimentally controlled by cavitation, which was the result of a low damage tolerance, λ. Creep deformation could be correlated with the von Mises effective stress parameter. The failure-mechanism control parameter governing the stress state coincided with the experimental results of the rupture of the materials under multiaxial stress states. Finally, the theoretical prediction based on constrained cavity growth and continuous nucleation agreed with the experimental rupture data to within a factor of three.  相似文献   
13.
Vehicles can experience impacts due to harsh road conditions. Contact with an uneven road surface causes vehicles to vibrate, which generates a loud impact sound. The attenuation of such noise is important because car passengers may complain about the impact noise. However, perfect removal of impact noise is not possible because most of it is caused by external conditions. More research is needed on the objective attributes of impact noise; however, the problem of impact noise is not a simple matter because impact noise is transient in nature and reaches a high level instantaneously. In this paper, a new objective attribute of impact noise is designed using the wavelet transform, which is appropriate for analyzing nonstationary signals, such as an impact signal. The usefulness of the new objective attribute, which is a sound metric, is examined by comparing the mean subjective ratings for real impact noise in passenger cars. The new sound metric has better correlation with the mean subjective rating than currently existing sound metrics.  相似文献   
14.
A fault detection method with parity equations is proposed in this paper. Due to its low cost implementation, the velocity of the motor is not measurable in electric parking brake (EPB) systems. Therefore, residuals are not reliable when estimating the motor velocity with a low-resolution encoder. In this paper, we propose a fault detection method with sensorless estimation using current ripples that estimates the position and velocity of the motor by detecting periodical oscillations of the armature current caused by rotor slots. In addition, this method can estimate the position and velocity of the motor with less computational effort than a state observer. Moreover, the method is less sensitive to motor parameters than model-based estimation methods. The effectiveness of this method is validated with experimental data, and the simulation results show that various faults have their own residual patterns. Therefore, we can detect the presence of faults by monitoring the residual signals.  相似文献   
15.
This paper presents a multi-body flexible dynamic analysis of a centrifugal turbo blower for a fuel cell electric vehicle (FCEV) based on the application of computer-aided engineering (CAE) to predict the acceleration at the mount position of the blower. This predicted acceleration is validated by using the measured acceleration data. The numerical simulation for the multi-body flexible dynamics of the blower is used not only to identify the most effective mount among four mounts in an FCEV by controlling the complex stiffness of the isolator, but also to suggest the range of complex stiffness of the isolator at the most effective mount. This numerical simulation technology can be useful for the estimation of the variation of vibration transmission for the structural modification of the turbo blower.  相似文献   
16.
The warm shrink fitting process is generally used to assemble automobile transmission parts (shafts/gears). However, this process causes a deformation in the addendum and dedendum of the gear depending on the fitting interference and gear profile, and this deformation causes additional noise and vibration between the gears. To address these problems, the warm shrink fitting process is analyzed by considering the error in the dimensional deformation of the addendum and dedendum found when comparing the results of a theoretical analysis and finite element analysis (FEA). A correction coefficient that reduces this error is derived through an analysis of the difference in the cross-sectional area between the shapes used for the theoretical analysis and that of the actual gear, and a closed-form equation to predict the dimensional deformation of the addendum and dedendum is proposed. The FEA method is proposed to analyze the thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process). To verify the closed-form equation using the correction coefficient, measurements are made of actual helical gears used in automobile transmissions. The results are in good agreement with those given by the closed-form equation.  相似文献   
17.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   
18.
One way of addressing traffic congestion is by efficiently utilizing the existing highway infrastructure. Narrow tilting vehicles that need a reduced width lane can be part of the solution if they can be designed to be safe, stable, and easy to operate. In this paper, a control system that stabilizes the tilt mode of such a vehicle without affecting the handling of the vehicle is proposed. This control system is a combination of two different types of control schemes known as steering tilt control (STC) and direct tilt control (DTC) systems. First, different existing variations of both STC and DTC systems are considered and their shortcomings analysed. Modified control schemes are then suggested to overcome the deficiencies. Then a new method of integrating these two control schemes that guarantees smooth switchover between the controllers as a function of vehicle velocity is proposed. The performance of the proposed STC, DTC, and integrated systems is evaluated by carrying out simulations for different operating conditions and some experimental work. The design of a second-generation narrow tilting vehicle on which the developed control system has been implemented is presented.  相似文献   
19.
Fast and predictive simulation tools are prerequisites for pursuing simulation based engine control development. A particularly attractive tradeoff between speed and fidelity is achieved with a co-simulation approach that marries a commercial gas dynamic code WAVE™ with an in-house quasi-dimensional combustion model. Gas dynamics are critical for predicting the effect of wave action in intake and exhaust systems, while the quasi-D turbulent flame entrainment model provides sensitivity to variations of composition and turbulence in the cylinder. This paper proposes a calibration procedure for such a tool that maximizes its range of validity and therefore achieves a fully predictive combustion model for the analysis of a high degree of freedom (HDOF) engines. Inclusion of a charge motion control device in the intake runner presented a particular challenge, since anything altering the flow upstream of the intake valve remains “invisible” to the zero-D turbulence model applied to the cylinder control volume. The solution is based on the use of turbulence multiplier and scheduling of its value. Consequently, proposed calibration procedure considers two scalar variables (dissipation constant C β and turbulence multiplier C M ), and the refinements of flame front area maps to capture details of the spark-plug design, i.e. the actual distance between the spark and the surface of the cylinder head. The procedure is demonstrated using an SI engine system with dual-independent cam phasing and charge motion control valves (CMCV) in the intake runner. A limited number of iterations led to convergence, thanks to a small number of adjustable constants. After calibrating constants at the reference operating point, the predictions are validated for a range of engine speeds, loads and residual fractions.  相似文献   
20.
Variable Nozzle Turbocharger (VNT) was invented to solve the problem of matching an ordinary turbocharger with an engine. VNT can harness exhaust energy more efficiently, enhance intake airflow response and reduce engine emissions, especially during transient operating conditions. The difficulty of VNT control lies in how to regulate the position of the nozzle at different engine working conditions. The control strategy designed in this study is a combination of a closed-loop feedback controller and an open-loop feed-forward controller. The gain-scheduled proportional-integral-derivative (PID) controller was implemented as the feedback controller to overcome the nonlinear characteristic. As it is difficult to tune the parameters of the gain-scheduled PID controller on an engine test bench, system identification was used to identify the plant model properties at different working points for a WP10 diesel engine on the test bench. The PID controller parameters were calculated based on the identified first-order-plus-dead-time (FOPDT) plant model. The joint simulation of the controller and the plant model was performed in Matlab/Simulink. The time-domain and frequency-domain performances of the entire system were evaluated. The designed VNT control system was verified with engine tests. The results indicated that the real boosting pressure traced the target boosting pressure well at different working conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号