首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   10篇
公路运输   453篇
综合类   60篇
水路运输   466篇
铁路运输   42篇
综合运输   433篇
  2023年   4篇
  2022年   20篇
  2021年   13篇
  2020年   12篇
  2019年   13篇
  2018年   35篇
  2017年   43篇
  2016年   71篇
  2015年   25篇
  2014年   51篇
  2013年   215篇
  2012年   77篇
  2011年   84篇
  2010年   66篇
  2009年   82篇
  2008年   65篇
  2007年   56篇
  2006年   34篇
  2005年   32篇
  2004年   22篇
  2003年   23篇
  2002年   25篇
  2001年   22篇
  2000年   29篇
  1999年   20篇
  1998年   23篇
  1997年   26篇
  1996年   25篇
  1995年   41篇
  1994年   7篇
  1993年   22篇
  1992年   15篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1980年   12篇
  1979年   14篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   7篇
  1972年   4篇
排序方式: 共有1454条查询结果,搜索用时 286 毫秒
801.
The dynamic response of planing vessels in regular head seas is investigated numerically. Nonlinear time domain simulations were performed using a 2D + t theory (two-dimensional plus time dependent theory). A prismatic hull form was assumed. We employed a two-dimensional (2D) boundary element method to solve the initial boundary value problems in 2D cross planes, in which nonlinear free-surface conditions and exact body boundary conditions were satisfied. At each time step, the total force and moment on the hull could be obtained by using the sectional forces calculated in those 2D planes. Heave and pitch motions were then acquired by solving the equations for those motions. The calculated heave and pitch responses were compared with the experiments by Fridsma (A systematic study of the rough-water performance of planing boats. Davidson Laboratory Report R-1275, 1969) for two different Froude numbers. Three-dimensional (3D) corrections at the transom stern were applied to show the influence of the 3D effect at the stern on the numerical results. Ship motions were affected by the 3D corrections, especially near the resonance frequency, while the phase angles were slightly affected and the acceleration peaks at the bow near the resonance frequency were sensitive to the 3D corrections. Other error sources in the theoretical results are also mentioned.  相似文献   
802.
In this paper, we investigated the effect of sloshing on the sway motions of two-dimensional rectangular cylinders in regular waves, bearing in mind possible applications for LNG-FPSO and LNG-FSRU. First, we carried out experiments for two models with different drafts, or the same draft but different filling ratios, in which the models were firmly connected to each other. The sway motion was measured with a noncontact video camera. This is an extension of Rognebakke and Faltinsen’s work for a single model (J Ship Res 47(3):208–221, 2003). It was found that the sway motion became small when the incident wave frequency was close to the lowest natural frequency of each model. The sway motion greatly increased when the wave frequency was higher than this frequency. The measured data were compared with numerical results obtained by a single-dominant multi-modal method; relatively good agreement was noted. However, the numerical results deviated from the experimental results near the lowest natural frequency of the smaller model, which was believed to be due to overturning waves, as observed during the experiment. Since this is out of the valid range for the single-dominant multi-modal method, other, more appropriate, methods such as the multi-dominant modal method must be applied instead.  相似文献   
803.
The use of spatial computable general equilibrium (SCGE) models for assessing the economic impacts of transport projects is one of the key items on the research agenda for project appraisal in the Netherlands. These models are particularly suitable for analysing indirect effects of transport projects through linkages between the transport sector and the wider economy. Potentially, according to the literature, indirect effects that are additional to first-order direct cost reductions can turn out to be up to almost 80% in magnitude of the direct impacts. Given the relevance of these models for policy appraisal, experiences with this new modelling approach are important to report. After two years of development and application of SCGE models for transport appraisal, we found that the translation of theory behind the spatial equilibrium models into practical model specifications and empirical applications is a challenging task, and may lead to problems in project appraisal in terms of inaccuracies in the assessment of impacts. This paper discusses some key challenges we encountered with the specification of the Dutch SCGE model RAEM. This chapter is especially useful for researchers developing SCGE applications for use in transport appraisal and those who want to get a better understanding of differences between theoretical and computable SCGE modelling.  相似文献   
804.
It is hypothesized that steady anguilliform swimming motion of aquatic animals is purely reactive such that no net vortex wake is left downstream. This is versus carangiform and tunniform swimming of fish, where vortex streams are shed from tail, fins, and body. But there the animal movements are such to produce partial vortex cancellation downstream in maximizing propulsive efficiency. In anguilliform swimming characteristic of the eel family, it is argued that the swimming motions are configured by the animal such that vortex shedding does not occur at all. However, the propulsive thrust in this case is higher order in the motion amplitude, so that relatively large coils are needed to produce relatively small thrust; the speeds of anguilliform swimmers are less than the carangiform and tunniform, which develop first order thrusts via lifting processes. Results of experimentation on live lamprey are compared to theoretical prediction which assumes the no-wake hypothesis. Two-dimensional analysis is first performed to set the concept. This is followed by three-dimensional analysis using slender-body theory. Slender-body theory has been applied by others in studying anguilliform swimming, as it is ideally suited to the geometry of the lamprey and other eel-like animals. The agreement between this new approach based on the hypothesis of wakeless swimming and the experiments is remarkably good in spite of the physical complexities.  相似文献   
805.
A new approach that models lift and drag hydrodynamic force signals operating over cylindrical structures was developed and validated. This approach is based on stochastic auto regressive moving average with exogenous (ARMAX) input and its time-varying form, TARMAX. Model structure selection and parameter estimation were discussed while considering the validation stage. In this paper, the cylindrical structure was considered as a dynamic system with an incoming water wave and resulting forces as the input and outputs, respectively. The experimental data, used in this study, were collected from a full-scale rough vertical cylinder at the Delft Hydraulics Laboratory. The practicality of the proposed method and also its efficiency in structural modeling were demonstrated through applying two hydrodynamic force components. For this purpose, an ARMAX model is first used to capture the dynamics of the process, relating in-line forces provided by water waves;secondly, the TARMAX model was applied to modeling and analysis of the lift forces on the cylinder. The evaluation of the lift force by the TARMAX model shows the model is successful in modeling the force from the surface elevation.  相似文献   
806.
There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs), that offer a significant enhancement of safety and convenience to drivers and passengers. However, the use of ADAS- and IVIS-based information devices may increase driver distraction and workload, which in turn can increase the chance of traffic accidents. The number of traffic accidents involving older drivers that are due to distraction, misjudgment, and delayed detection of danger, all of which are related to the drivers’ declining physical and cognitive capabilities, has increased. Because the death rate in traffic accidents is higher when older drivers are involved, finding ways to reduce the distraction and workload of older drivers is important. This paper generalizes driver information device operations and assesses the workload while driving by means of experiments involving 40 drivers in real cars under actual road conditions. Five driving tasks (manual only, manual primarily, visual only, visual primarily, and visual-manual) and three age groups (younger (20–29 years of age), middle-aged (40–49 years of age), and older (60–69 years of age)) were considered in investigating the effect of age-related workload difference. Data were collected from 40 drivers who drove in a real car under actual road conditions. The experimental results showed that age influences driver workload while performing in-vehicle tasks.  相似文献   
807.
Adequate visibility through the automobile windshield is of paramount practical significance, most often at very low temperatures when ice tends to form on the windshield screen. But the numerical simulation of the defrost process is a challenging task because phase change is involved. In this study numerical solution was computed by a finite volume computational fluid dynamics (CFD) program and experimental investigations were performed to validate the numerical results. It was found that the airflow produced by the defrost nozzle is highly nonuniform in nature and does not cover the whole windshield area. The nonuniformity also severely affected the heating temperature pattern on the windshield. The windshield temperature reached a maximum in the vicinity of the defroster nozzle in the lower part of the windshield and ranged from 9∼31°C over a period of 30 min, which caused the frost to melt on the windshield. The melting time was under 10 minutes, which satisfied the NHTSA standard. The numerical predictions were in close agreement with the experimental results. Thus, CFD can be a very useful design tool for an automobile HVAC system.  相似文献   
808.
Since the invention of automobiles, the need to know the braking performance of vehicles has been acknowledged. However, because there are numerous design variables as well as nonlinearities in the braking system, it is difficult to predict the performance accurately. In this paper, a computational program is developed to estimate the braking performance numerically. This synthetic braking performance program accounts for pedal force, pedal travel and deceleration of braking parts, such as master cylinder, booster, valve, brake pad, rotor, and hoses. To improve the accuracy of program, a semi-empirical model of a braking system is introduced by using the empirical test data of pad compression, hose expansion and the friction coefficient between the pad and rotor. The accuracy of the estimation is evaluated by comparing it to the actual vehicle test results. The developed program is easy for the brake system engineers to manipulate and it can be used in the development of new vehicles by incorporating the graphical presentations.  相似文献   
809.
As a crash energy absorber, a tube-type crash element (expansion tube) dissipates kinetic energy through the internal deformation energy of the tube and through frictional energy. In this paper, the effects of the variation of punch angles on the energy-absorbing characteristics of expansion tubes were studied by quasi-static tests using three punch angles (15°, 30°, and 45°). A finite element analysis of the tube expanding process (m = τ max /K) was performed using a shear friction model to confirm the variation of the shear friction factor with respect to punch angles using the inverse method. Additional analyses were performed using angles of 20°, 25°, 35°, and 40° to study the effect of the punch angles on the internal deformation energy, frictional energy, and expansion ratio of the tubes. The results of the experiment and finite element analysis showed that the shear friction factor was inversely proportional to the punch angles, and a specific punch angle existed at which the absorbed energy and expansion ratio remained constant.  相似文献   
810.
Proportional derivative (PD) steering assistance can greatly improve the control stability of a vehicle. However, for all PD steering methods, the discomfort associated with the need to continuously turn the steering wheel during cornering is significant. Because the steering return phenomenon of the steering wheel stop like this is not preferable, PD steering assistance should be extremely weak (almost 0) during normal cornering. Alternatively, during drift cornering, during which the grip area of the tires is exceeded, PD steering assistance is helpful because the driver has good control over counter-steering. Moreover, the use of PD steering assistance is preferable during lane changes because the response and settling of a vehicle is greatly improved when PD steering assistance is used. Based on these considerations, a previous report examined steering method controls in which the PD steering assistance constant was incorporated along with the drivers’ perception changes in certain driving situations. This study aimed to determine a suitable PD steering assistance constant in relation to the driving situation. A proper PD steering assistance constant was found to exist for specific driving situations. Based on the results of gaze detection using an eye mark recorder, the study was able to reduce the right and left difference of the gaze at the driver by controlling PD steering assistance using a proper PD steering assistance constant for various driving situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号