首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3743篇
  免费   33篇
公路运输   1218篇
综合类   140篇
水路运输   1160篇
铁路运输   118篇
综合运输   1140篇
  2023年   19篇
  2022年   65篇
  2021年   36篇
  2020年   27篇
  2019年   41篇
  2018年   109篇
  2017年   107篇
  2016年   171篇
  2015年   46篇
  2014年   150篇
  2013年   581篇
  2012年   180篇
  2011年   198篇
  2010年   171篇
  2009年   177篇
  2008年   172篇
  2007年   114篇
  2006年   84篇
  2005年   82篇
  2004年   63篇
  2003年   50篇
  2002年   53篇
  2001年   55篇
  2000年   73篇
  1999年   49篇
  1998年   57篇
  1997年   57篇
  1996年   65篇
  1995年   83篇
  1994年   33篇
  1993年   48篇
  1992年   37篇
  1991年   32篇
  1990年   26篇
  1989年   17篇
  1988年   30篇
  1987年   27篇
  1986年   27篇
  1985年   34篇
  1984年   33篇
  1983年   26篇
  1982年   33篇
  1981年   38篇
  1980年   33篇
  1979年   45篇
  1978年   24篇
  1977年   27篇
  1976年   12篇
  1975年   25篇
  1974年   17篇
排序方式: 共有3776条查询结果,搜索用时 15 毫秒
951.
This paper presents a method for estimating the vehicle side slip angle, which is considered as a significant signal in determining the vehicle stability region in vehicle stability control systems. The proposed method combines the model-based method and kinematics-based method. Side forces of the front and rear axles are provided as a weighted sum of directly calculated values from a lateral acceleration sensor and a yaw rate sensor and from a tire model according to the nonlinear factor, which is defined to identify the degree of nonlinearity of the vehicle state. Then, the side forces are fed to the extended Kalman filter, which is designed based on the single-track vehicle model associated with a tire model. The cornering stiffness identifier is introduced to compensate for tire force nonlinearities. A fuzzy-logic procedure is implemented to determine the nonlinear factor from the input variables: yaw rate deviation from the reference value and lateral acceleration. The proposed observer is compared with a model-based method and kinematics-based method. An 8 DOF vehicle model and Dugoff tire model are employed to simulate the vehicle state in MATLAB/SIMULINK. The simulation results shows that the proposed method is more accurate than the model-based method and kinematics-based method when the vehicle is subjected to severe maneuvers under different road conditions.  相似文献   
952.
HILS (Hardware In the Loop Simulation) and RBT (Requirement-Based Testing) are widely used to evaluate the performance and reliability of automotive ECUs (Electronic Control Units). The HILS method is used to predict the behavior of ECU-installed vehicles and to evaluate the performance of ECU controllers. RBT evaluates whether the embedded system satisfies the pre-defined requirements. In this study, the behavior of a vehicle is regarded as a system requirement, and an embedded system test procedure that evaluates the system requirement is proposed. In particular, a new method is introduced, which integrates HILS with RBT. Using the proposed method, the behavior of an articulated vehicle equipped with an AWS (All Wheel Steering) ECU is evaluated with RBT software.  相似文献   
953.
This paper describes a drive controller designed to improve the lateral vehicle stability and maneuverability of a 6-wheel drive / 6-wheel steering (6WD/6WS) vehicle. The drive controller consists of upper and lower level controllers. The upper level controller is based on sliding control theory and determines both front and middle steering angle, additional net yaw moment, and longitudinal net force according to the reference velocity and steering angle of a manual drive, remotely controlled, autonomous controller. The lower level controller takes the desired longitudinal net force, yaw moment, and tire force information as inputs and determines the additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and takes into consideration the friction circle related to the vertical tire force and friction coefficient acting on the road and tire. Distributed longitudinal/lateral tire forces are determined as proportion to the size of the friction circle according to changes in driving conditions. The response of the 6WD/6WS vehicle implemented with this drive controller has been evaluated via computer simulations conducted using the Matlab/Simulink dynamic model. Computer simulations of an open loop under turning conditions and a closed-loop driver model subjected to double lane change have been conducted to demonstrate the improved performance of the proposed drive controller over that of a conventional DYC.  相似文献   
954.
As a powertrain for hybrid electric vehicles (HEVs), the automatic transmission (AT) is not only convenient for the driver but also reduces hybridization costs because the existing production line is used to produce the AT. However, it has low fuel economy due to the torque converter. To overcome this disadvantage, this paper studies HEVs equipped an AT without a torque converter. In this case, additional torque control is needed to prevent the driving quality from deteriorating. This paper suggests three different torque control methods and develops a simulator for an HEV that can simulate the dynamic behaviors of the HEV when the engine clutch is engaged. The HEV drive train is modeled with AMESim, and a controller model is developed with MATLAB/Simulink. A co-simulation environment is established. By using the developed HEV simulator, simulations are conducted to analyze the dynamic behaviors of the HEV according to the control methods.  相似文献   
955.
This paper focuses on the dynamic stiffness and overall equivalent damping of an air spring connected to an orifice and an auxiliary reservoir, with respect to the displacement excitation frequency, orifice area, and auxiliary reservoir volume. A theoretical model of this air spring with its auxiliary reservoir is derived by utilizing the energy conservation equation, gas state equation, and orifice flow rate equation. Simulation results from the presented model reveal that, when the air spring is subject to harmonic displacement excitation, its dynamic stiffness increases with an increase in excitation frequency and decrease in orifice area. Smaller orifice areas and lower excitation frequencies result in higher overall equivalent damping. A validation experiment is also implemented. When compared with experimental results, simulations show consistent varying trends of the dynamic stiffness and overall equivalent damping. The model developed here can correctly describe the behavior of the air spring with auxiliary reservoir, indicating that it is reasonable and feasible.  相似文献   
956.
An idle speed engine model has been proposed and applied for the development of an idle speed controller for a 125 cc two wheeler spark ignition engine. The procedure uses the measured Indicated Mean Effective Pressure (IMEP) at different speeds at a constant fuel rate and throttle position obtained by varying the spark timing. At idling conditions, IMEP corresponds to the friction mean effective pressure. A retardation test was conducted to determine the moment of inertia of the engine. Using these data, a model for simulating the idle speed fluctuations, when there are unknown torque disturbances, was developed. This model was successfully applied to the development of a closed loop idle speed controller based on spark timing. The controller was then implemented on a dSPACE Micro Autobox on the actual engine. The Proportional Derivative Integral (PID) controller parameters obtained from the model were found to match fairly well with the experimental values, indicating the usefulness of the developed idle speed model. Finally, the optimized idle speed control algorithm was embedded in and successfully demonstrated with an in-house built, low cost engine management system (EMS) specifically designed for two-wheeler applications.  相似文献   
957.
This paper describes an optimal vehicle speed controller that uses torque-based control concepts. The controller design was divided into two steps: first, for a given vehicle speed trajectory, the engine torque demand was determined; in the second stage, a torque controller was implemented to track this torque demand. The torque demand was determined by a primary component and a correction component. The primary component was determined by solving an off-line optimization problem, and the correction component was added to compensate for the error caused by the off-line optimization. A modelbased proportional-integral (PI) feedback torque controller was employed to realize the engine torque tracking. Simulation results generated by a benchmark simulator were given to demonstrate performance of the optimal vehicle speed controller and a conventional PI speed controller that was included for comparison.  相似文献   
958.
Under light-load conditions in early-injection stratified-charge compression-ignition (SCCI) engines, excessive premixing can lead to undesirable levels of unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions. Optimal stratification can reduce these emissions. In this work, the effects of changes in swirl, injection pressure, injector hole-size and number of holes, injection timing, and piston geometry on stratification are computationally investigated. It is shown that these parameters affect the stratification through their influence on the rate of spray penetration, drop vaporization, and fuel/air mixing. The outcome is characterized by examining the evolution of the spatial distribution of the fuel vapor in the chamber and its mass-based distribution function. All other parameters remaining the same, decreasing drop size leads to faster vaporization and richer mixtures. Increasing penetration leads to greater spreading and leaner mixtures. Increasing spray included-angle leads to greater spreading and leaner mixtures. Increasing injection pressure leads to increased mixing and leaner mixtures. Increasing injector hole-size leads to richer mixtures at lighter loads because the duration of injection is reduced and the fuel is confined closer to the axis. Increasing swirl leads to faster breakup of the head-vortex and confinement of the fuel closer to the axis, and hence richer mixture.  相似文献   
959.
In an HLA (hydraulic lash adjuster) piston engine, “pump up” can occur when a valve is opened by the HLA when it should be closed. HLA pump up is more frequently encountered with exhaust valves than with intake valves. When HLA pump up in occurs in the exhaust valve, exhaust gas from the exhaust manifold enters the cylinder on the intake stroke, and fresh air-fuel mixture exits through the exhaust manifold on the compression stroke and is burned in the catalyst, causing partial burning, misfire, catalyst melting and power drop. HLA pump up occurs when the force on the valve from the HLA is higher than the force on the HLA from the valve. HLA pump up is related to design parameters, such as oil pressure, rocker ratio, spring load, spring surge, and both intake and exhaust valve timing. In this study, valve lift and load on a roller finger follower were measured at varying engine firing conditions to evaluate HLA pump up. The results indicated that effective measures to reduce HLA pump up include a higher rocker ratio, a lower oil supply pressure to the HLA, a higher spring installation load and a lower spring surge.  相似文献   
960.
Gerotor pumps are widely used in the automotive industry for engine oil lubrication, due to their high volumetric efficiency and smooth pumping action. In many cases, the lubricating oil from the sump is mixed with contaminants, such as dust and tiny solid particles, or becomes thickened, due to aging. These problems will lead to critical situations, such as increased noise, enhanced wear and erosion, and poor lubrication of the engine. These critical situations were studied by conducting a detailed CFD integrated investigation on a gerotor pump’s performance at different operating conditions in three phases, and the results are presented in this paper. In first phase, a CFD model of a gerotor pump was developed with a dynamic mesh for the rotary movement of both the inner and outer rotors. The effects on pump flow rate of important parameters, such as rotor speed, fluid viscosity and number of ports, were simulated using non-contaminated oil at room temperature and an elevated temperature of 140oC. The relationship between flow rate and pressure at different rotor speeds was predicted and validated with test data for further parametric study. The pressure ripples at different time steps were measured at different angular positions of the rotors to examine the model accuracy. It was found that the flow rate increased and pressure pulsation, as well as flow recirculation, was reduced when ports were added to the cover plate. A suction pipe with a strainer was added for the second phase to capture the undesired changes in flow behavior, such as cavitation, which is caused by negative suction at the inlet region of pump. A suitable size for the inlet suction pipe for this pump was chosen after performing tests to characterize the flow behavior with single and double ports. Next, the relationship between pressure drop and strainer porosity was determined using different porosity values for the strainers. In the final phase, oil with different concentrations of solids was simulated to measure the effect of solid particles on flow rates and pressure losses. It was observed that the intensity of the recirculation was reduced at the suction end at the higher concentration of 0.04%, due to particle inertial effects. It was also found that particle size distribution affected the overall efficiency and pressure head of the pump.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号