首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2562篇
  免费   13篇
公路运输   891篇
综合类   137篇
水路运输   751篇
铁路运输   83篇
综合运输   713篇
  2023年   14篇
  2022年   42篇
  2021年   25篇
  2020年   28篇
  2019年   29篇
  2018年   74篇
  2017年   82篇
  2016年   138篇
  2015年   39篇
  2014年   110篇
  2013年   377篇
  2012年   125篇
  2011年   143篇
  2010年   126篇
  2009年   133篇
  2008年   131篇
  2007年   83篇
  2006年   69篇
  2005年   64篇
  2004年   40篇
  2003年   29篇
  2002年   37篇
  2001年   40篇
  2000年   55篇
  1999年   33篇
  1998年   32篇
  1997年   37篇
  1996年   43篇
  1995年   56篇
  1994年   16篇
  1993年   36篇
  1992年   25篇
  1991年   23篇
  1990年   13篇
  1989年   7篇
  1988年   15篇
  1987年   15篇
  1986年   17篇
  1985年   17篇
  1984年   15篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   17篇
  1979年   20篇
  1978年   14篇
  1977年   10篇
  1976年   6篇
  1975年   16篇
  1974年   9篇
排序方式: 共有2575条查询结果,搜索用时 0 毫秒
911.
912.
Based on vehicle constraints and known human operator characteristics, a strategy model was postulated for describing behavior in the lane keeping task. This model includes nonlinear thresholds operating on vehicle yaw and lateral translation, random input sources to account for spurious driver activity, and smoothing to account for driver response lag. The output of the model is steering wheel position

To determine model parameters and model suitability in describing driver behavior, recordings were made for driver-subjects performing a lane-keeping task in a moving base driving simulator having a computer generated display. A procedure involving both analytic and experimental techniques was then developed for determining the model parameters of each driver

Statistical comparisons and visual inspections made between driver-vehicle and model-vehicle time histories indicate a high degree of correspondence. Models such as these show promise in obtaining a better understanding of driver behavior and driver-vehicle response by incorporating nonlinear elements in the driver model.  相似文献   
913.
The rollover immunity levels of articulated tank vehicles with partial loads are investigated. A static roll plane model of the articulated vehicle employing partially filled cylindrical tank is developed. The vertical and lateral translation of the liquid cargo due to vehicle roll angle and lateral acceleration, encountered during steady turning, are evaluated. The roll moments arising from vertical and lateral translation of the liquid cargo are determined and incorporated in the roll plane model of the vehicle. The adverse influence of the unique interactions of the liquid within the tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The influence of compartmenting of the tank on the steady turning roll response of the vehicle is analyzed, and an optimal order of unloading the compartmented tank is discussed.  相似文献   
914.
The focus of this paper is on the steady-state curving behaviour of a freight car system with Damper Coupled Wheelset (DCW), where the wheels of conventional shape within an axle are coupled through a damper element. A freight truck model with two DCW and pseudo-car body on curved track is developed to study the influence of wheelset coupler parameter on the curving response and performance. The response is primarily evaluated in terms of wheelset tracking error and yaw misalignment in response to track curvature and cant deficiency. The curving performance is evaluated in terms of slip and flange boundaries. The results in general, indicate that when the value of coupler parameter is reduced, the wheelset response to track curvature increases, and results in flanging and wheel slip on a less tighter curve than those corresponding to conventional rigid axled wheelsets.  相似文献   
915.
Presented in this paper is an adaptive, model based, fueling control system for spark ignition-internal combustion engines. Since the fueling control system is model based, the engine maps currently used in engine fueling control are eliminated. This proposed fueling control system is modular and can therefore accommodate changes in the engine sensor set such as replacing the mass-air flow sensor with a manifold air pressure sensor. The fueling algorithm can operate with either a switching type O 2 sensor or a linear O 2 sensor. The fueling control system is also parceled into steady state fueling compensation and transient fueling compensation. This feature provides the distinction between fueling control adaptation for transient fueling and steady state fueling. The steady state fueling compensation utilizes a feedforward controller which determines the necessary fuel pulsewidth after a throttle transient to achieve stoichiometry. This feedforward controller is comprised of two nonlinear models capturing the steady state characteristics of the fueling process. These models are identified from an input-output testing procedure where the inputs are fuel pulsewidth and mass-air flow signal and the output is a lambda signal. These models are adapted via a recursive least squares method to accommodate product variability, engine aging, and changes in the operating environment. The transient fueling compensation also utilizes a feedforward controller that captures the essential dynamic characteristics of the transient fueling operation. This controller is measured using a frequency domain system identification approach. This proposed fueling control system is demonstrated on a Ford 4.6L V-8 fuel injected engine.  相似文献   
916.
Optimal Linear Active Suspensions with Multivariable Integral Control   总被引:5,自引:0,他引:5  
In this paper, an optimal suspension system is derived for a quarter-car model using multivariable integral control. The suspension system features two parts. The first part is an integral control acting on suspension deflection to ensure zero steady-sate offset due to body and maneuvering forces as well as road inputs. The second is a proportional control operating on the vehicle system states for vibration control and performance improvement. The optimal ride performance of the active suspensions based on linear full-state feedback control laws with and without integral control together with the performance of passive suspensions are compared.  相似文献   
917.
On Control Laws for Vehicle Suspensions Accounting for Input Correlations   总被引:1,自引:0,他引:1  
Input correlations involving time delays are common in active vehicle suspension system problems. One approach to control law derivation fur such systems is to restrict attention to slate feedback laws in the interests of practicality and it is then of interest to determine the law which is, in some sense, the best. Under assumptions which are common in this area. relating to input, system and cost Function forms, a new derivation of the expression for the cost, accounting for time delays, is given. The use of the expression in numerical procedures for determining effective control gains is discussed and an example for a half car planar vehicle model is described. By comparing results with existing ones which are truly optimal, an estimate is made of the loss of performance which results from the restriction of the control law form in this case. Some generalisation of the results is attempted and they are placed in a contemporary context at the conclusion.  相似文献   
918.
A low-cost solution based on fuel injection strategies was investigated to optimize the combustion process in a boosted port fuel injection spark ignition (PFI SI) engine. The goal was to reduce the fuel consumption and pollutant emissions while maintaining performance. The effect of fuel injection was analyzed for the closed and open valve conditions, and the multiple injection strategies (MIS) based on double and triple fuel injection in the open-valve condition. The tests were performed on an optical accessible single-cylinder PFI SI engine equipped with an external boost device. The engine was operated at full load and with a stoichiometric ratio equivalent to that of commercial gasolines. Optical techniques based on 2D-digital imaging were used to follow the flame propagation from the flame kernel to late combustion phase. In particular, the diffusion-controlled flames near the valves and cylinder walls, due to fuel deposition, were studied. In these conditions, the presence of soot was measured by two-color pyrometry, and correlated with engine parameters and exhaust emissions measured by conventional methods. The open valve fuel injection strategies demonstrated better combustion process efficiency than the closed ones. They provided very low soot levels in the combustion chamber and engine exhaust, and a reduction in specific fuel consumption. The multiple injection strategies proved to be the best solution in terms of performance, soot concentration, and fuel consumption.  相似文献   
919.
This paper focuses on fuel economy improvement according to the type of power steering system. Usually, a conventional power steering system is directly driven by the crankshaft of the engine with a belt, known as HPS (hydraulic power steering). However, there is some inefficiency with this system at high engine speeds. To improve this inefficiency, automobile makers have developed two power steering systems: EHPS (electro-hydraulic power steering) and MDPS (motor-driven power steering) or EPS (electric powered steering). However, there has been insufficient study of effects of the type of power steering system on fuel economy. In this paper, the effect of the type of power steering system on fuel economy is studied experimentally, and calculations of the effect on vehicle fuel economy are presenting using computer simulation with AVL cruise software. The results demonstrate that a 1% vehicle fuel economy improvement can be achieved in a vehicle with an electro-hydraulic power steering system compared to a vehicle with a hydraulic power steering system. In addition, a 1.7% vehicle fuel economy improvement can be achieved using a full electric power steering system in a FTP-75 driving cycle. These results could be used to choose a power steering system.  相似文献   
920.
There are basically two methods to control yaw moment which is the most efficient way to improve vehicle stability and handling. The first method is indirect yaw moment control, which works based on control of the lateral tire force through steering angle control. It is mainly known as active steering control (ASC). Nowadays, the most practical approach to steering control is active front steering (AFS). The other method is direct yaw moment control (DYC), in which an unequal distribution of longitudinal tire forces (mainly braking forces) produces a compensating external yaw moment. It is well known that the AFS performance is limited in the non-linear vehicle handling region. On the other hand, in spite of a good performance of DYC in both the linear and non-linear vehicle handling regions, continued DYC activation could lead to uncomfortable driving conditions and an increase in the stopping distance in the case of emergency braking. It is recommended that DYC be used only in high-g critical maneuvers. In this paper, an integrated fuzzy/optimal AFS/DYC controller has been designed. The control system includes five individual optimal LQR control strategies; each one, has been designed for a specific driving condition. The strategies can cover low, medium, and high lateral acceleration maneuvers on high-μ or low-μ roads. A fuzzy blending logic also has been utilized to mange each LQR control strategy contribution level in the final control action. The simulation results show the advantages of the proposed control system over the individual AFS or DYC controllers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号