首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   16篇
公路运输   556篇
综合类   45篇
水路运输   305篇
铁路运输   25篇
综合运输   308篇
  2023年   9篇
  2022年   20篇
  2021年   9篇
  2020年   4篇
  2019年   11篇
  2018年   31篇
  2017年   39篇
  2016年   78篇
  2015年   17篇
  2014年   66篇
  2013年   189篇
  2012年   66篇
  2011年   77篇
  2010年   73篇
  2009年   57篇
  2008年   77篇
  2007年   33篇
  2006年   29篇
  2005年   24篇
  2004年   20篇
  2003年   10篇
  2002年   13篇
  2001年   17篇
  2000年   29篇
  1999年   15篇
  1998年   13篇
  1997年   17篇
  1996年   22篇
  1995年   24篇
  1994年   9篇
  1993年   16篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1239条查询结果,搜索用时 0 毫秒
591.
Nanoparticle and gas-phase emission factors are presented for a liquefied petroleum gas (LPG) passenger vehicle and are compared to gasoline operation. A bi-fuel LPG-gasoline vehicle certified for use on either fuel was used as the test vehicle so that a direct comparison of the emissions could be made based on fuel choice. These values were considered along with previous studies to determine the relative change in particulate emissions due to fuel choice over a wide range of vehicles and operating conditions. The vehicle examined in this study was tested on a chassis dynamometer for both steadystate and transient conditions. Transient test cycles included the US FTP72 driving cycle, Japanese driving cycle and modified Indian driving cycle while steady-state tests were done at vehicle speeds ranging from 10–90 km/hr in various transmission gears. Exhaust particle size distributions were measured in real-time using a differential mobility spectrometer (DMS50), and particle number and particle mass emission factors were calculated. For both fuels, the majority of the particles ranged from 5 to 160 nm in terms of particle diameter, with typically more than 85% of the particles in the nucleation mode (between 5–50 nm). In most cases, the vehicle produced a greater fraction of larger (accumulation mode) particles when fuelled on LPG. Using the data in the literature as well as the data in the current study, gasoline fuel produces 4.6 times more particles in terms of number and 2.1 times more particles in terms of mass.  相似文献   
592.
A novel combustion concept namely “multiple premixed compression ignition” (MPCI) in gasoline direct injection compression ignition (GDICI) regime is proposed. Its predominant feature is the first premixed and followed quasipremixed combustion processes in a sequence of “spray-combustion-spray-combustion”. The multiple-stage premixed combustion decouples the pressure rise with pollutants formation process, which means the pressure rise rate and emissions can be reduced simultaneously, while achieving a high thermal efficiency. The gasoline MPCI mode has been demonstrated in a research engine with a compression ratio of 18.5. Gasoline with the research octane number (RON) of 94.4 was tested under 1400 rpm, 0.6 MPa IMEP conditions, without EGR and intake boosting. A parameter study of common rail pressure and intake temperature was implemented to investigate their effects on the performance of MPCI mode. Compared to the single-stage diffusion combustion in traditional diesel engines, the gasoline MPCI mode achieves lower emissions of soot, NO, CO, as well as slightly higher indicated efficiency, with a penalty of higher THC emissions when the common rail pressure is larger than 80 MPa in this study. With intake temperature sweeping, the gasoline MPCI mode also has the foregoing advantages compared to the diesel under the same operating conditions.  相似文献   
593.
The main focus of this paper is to compensate the steady state offset error of the 6D IMU which provides the measurements that include the vehicle linear accelerations and angular rates of all three axes. Additionally, the sensor compensation algorithm exploits the wheel speed data and the steering angle information, since they are already available in most of the modern mass production vehicles. These inputs are combined with the inverse vehicle kinematics to estimate the steady state offset error of each sensor inputs as it is done in a disturbance observer, and the raw sensor measurements are compensated by the estimated offset errors. The stability of the error dynamics regarding the integrated signal processing system is verified, and finally, the performance of the system is tested via experiments based on a real production SUV.  相似文献   
594.
This paper addresses the problem of determining the maximum allowable speed (V max ) of Unmanned Ground Vehicles (UGVs) traversing off-road heterogeneous rough/complex terrain. The maximum speed is calculated based on online terrain assessment and the vehicle’s characteristics; this speed achieves the high speed navigation without exceeding a predefined allowable range of transmitted force and moments (i.e., moments in the roll and pitch directions) to the vehicle’s frame. The proposed system enables UGV’s to change their speed autonomously and transit between terrains with different characteristics (e.g., pavement, rocky) safely. This paper proposes a computationally inexpensive approach to process acquired data and assess the terrain roughness. The proposed Roughness Index (RI) is used to represent the terrain roughness on a scale from 0.0 (highly rough to be traversed by a particular vehicle) to 1.0 (perfectly flat/smooth surface). A general vehicle model (workable for any vehicle size and wheel configuration) is presented in this paper. A closed form expression of the maximum allowable vehicle speed is developed. Simulation results obtained on real vehicles (e.g., military tank LEOPARD I) show the effect of increasing the number of wheels to improve the capability of a ground vehicle to traverse rough terrains at high speeds. In addition, the proposed terrain assessment system is a key module in UGVs navigation systems enabling them to be truly autonomous by providing the navigation system with the necessary information for path and speed planning.  相似文献   
595.
The directional dynamic analyses of partly-filled tank vehicles have been limited to quasi-static fluid motion due to computational complexities associated with dynamic fluid slosh analyses. The dynamic fluid slosh causes significantly higher magnitudes of slosh forces and moments in the transient state that cannot be characterized through quasi-static approach, which provides reasonably good estimates of the mean responses. In this study, a three-dimensional nonlinear model of a partly-filled cylindrical tank with and without baffles is developed to investigate the significance of resulting destabilizing forces and moments caused by the transient fluid slosh, and the effects of baffles. The baffles and the end caps are modeled with curved shapes. The analyses are performed under varying magnitudes of steady lateral, longitudinal and combinations of lateral and longitudinal accelerations of the tank, and two different fill volumes using the FLUENT software. The results of the study are presented in terms of mean and peak slosh forces and moments, and variations in the mass moments of inertia of the fluid cargo within a clean bore and a baffled tank, for two different fill volumes and different magnitudes of acceleration excitations. The ratios of transient responses to the mean responses, termed as amplification factors, are further described to emphasize the significance of dynamic fluid slosh on the forces and moments induced on the vehicle. The results in general suggest that the mean responses attained from dynamic fluid slosh analyses correlate well with those attained from the quasi-static analyses for a clean bore tank. The amplification ratios of the resulting forces and moments could approach as high as 2. The results clearly show that the presence of baffles helps to suppress the peak as well as mean slosh forces and moments significantly.  相似文献   
596.
近年来,桥梁水毁日益频发,已成为桥梁倒塌失效的首要因素。从冲刷、洪水2类最主要的水文因素出发,充分结合历史数据,分析并对比其对桥梁水毁的影响程度与规律;并按2类水文因素所对应的不同桥梁倒塌失效模式,对桥梁水毁现有的研究工作和方法进行总结归纳;最后,聚焦实桥应用,对现有桥梁水毁监测和诊治手段进行全面梳理。综述可得以下结论:①冲刷是导致桥梁水毁的最主要因素,所致失效桥型以桁架桥、梁桥、拱桥为主,桥梁服役时间、结构安全状态、年平均径流量均与桥梁所受冲刷程度存在较强相关性;②冲刷坑空间形态数值仿真与试验结果仍有一定差距,其泥沙模型缺少考虑床沙级配的影响,经验公式法尚需突破计算维度的局限性,完善考虑时间因素和黏性土的冲刷深度预测;③现阶段洪水波流竖向升力计算公式较少考虑脉动压力,浪荷载水槽试验尚未完全探明波浪特性与作用力间的联系,桥梁可靠度研究多见以冲刷为主的多灾害下联合效应计算,仍缺少波流、浪力作用与地震动水作用等其他灾害联合作用的深入探讨;④桥梁抗水目前仍局限于流场与结构域的独立研究,未见不同水文因素下基于结构域-流场多场耦合的桥梁失效模式分析;⑤雷达、声波以及潜水员水下检测是现阶段桥梁冲刷主流监测方式,桥梁冲刷动力识别适用于复杂环境下大规模、区域性桥梁检测,但仍有待进一步的应用研究,而既有桥梁水毁诊治手段在具体实施时需因地制宜,避免反而加剧水文病害。  相似文献   
597.
An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOx). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since PM (Particulate Matter) fouling reduces the efficiency of an EGR cooler, a tradeoff exists between the amount of NOx and PM emissions, especially at high engine loads. In the present study, we performed engine dynamometer experiments and numerical analyses to investigate how the internal shape of an EGR cooler affects the heat exchanger efficiency. Heat exchanger efficiencies were examined for plain and spiral EGR coolers. The temperature and pressure distributions inside these EGR coolers were obtained in three dimensions using the numerical package program FLUENT.  相似文献   
598.
The sub-chamber type gasoline engine was suggested to be a type of clean engine, but the presence of residual gas in the sub-chamber was a serious fault. In this experimental study, the CNG direct injection method was applied to scavenge residual gas from the sub-chamber. The CVC (constant volume chamber) is divided into the sub-chamber and main-chamber and used as the main experimental apparatus. Because each combustion chamber of the CVC has an injector, the injector can be used freely, at the same time or individually. Therefore, the scavenging efficiency can be improved by changing injection times for the sub-chamber. The experimental results demonstrated that when all the fuel was injected into the sub-chamber, the combustion duration was shortened by 30% compared to that of injection into the main-chamber. Although residual gas was observed in the CVC, when the frequency of injections into the sub-chamber increased, good combustion characteristics were obtained.  相似文献   
599.
This study was performed to clarify criteria for cavitation inception and the relationship between flow conditions and cavitation flow patterns of diesel and biodiesel fuels. The goal was to analyze the effects of injection conditions and fuel properties on cavitating flow and disintegration phenomena of flow after fuel injection. To accomplish this goal, it was utilized a test nozzle with a cylindrical cross-sectional orifice and a flow visualization system composed of a fuel supply system and an image acquisition system. In order to analyze the rate of flow and injection pressure of the fuel, a flow rate meter and pressure gauge were installed at the entrance of the nozzle. A long distance microscope device equipped with a digital camera and a high resolution ICCD camera were used to acquire flow images of diesel and biodiesel, respectively. The effects of nozzle geometry on the cavitating flow were also investigated. Lastly, a detailed comparison of the nozzle cavitation characteristics of both fuel types was conducted under a variety of fuel injection parameters. The results of this analysis revealed that nozzle cavitation flow could be divided into four regimes: turbulent flow, beginning of cavitation, growth of cavitation, and hydraulic flip. The velocity coefficient of diesel fuel was greatly altered following an increase in flow rate, although for biodiesel, the variation of the velocity coefficient relative to the rate of flow was mostly constant. The cavitation number decreased gradually with an increase in the Reynolds number and Weber number, and the discharge coefficient was nearly equal to one, regardless of cavitation number. Lastly, it could not observe cavitation growth in the tapered nozzle despite an increase in fuel injection pressure.  相似文献   
600.
In recent years, particle number emissions rather than particulate mass emissions in automotive engines have become the subject with controversial discussions. Recent results from studies of health effects imply that it is possible that particulate mass does not properly correlate with the variety of health effects attributed to engine exhaust. The concern is now focusing on nano-sized particles emitted from I. C. engines. In this study, particulate mass and particle number concentration emitted from light-duty vehicles were investigated for a better understanding of the characteristics of the engine PM from different types of fuels, such as gasoline and diesel fuel. Engine nano-particle mass and size distributions of four test vehicles were measured by a condensation particle counter system, which is recommended by the particle measurement program in Europe (PMP), at the end of a dilution tunnel along a NEDC test mode on a chassis dynamometer. We found that particle number concentrations of diesel passenger vehicles with DPF system are lower than gasoline passenger vehicles, but PM mass has some similar values. However, in diesel vehicles with DPF system, PM mass and particle number concentrations were greatly influenced by PM regeneration. Particle emissions in light-duty vehicles emitted about 90% at the ECE15 cycle in NEDC test mode, regardless of vehicle fuel type. Particle emissions at the early cold condition of engine were highly emitted in the test mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号