首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   12篇
公路运输   189篇
综合类   34篇
水路运输   169篇
铁路运输   15篇
综合运输   156篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   2篇
  2019年   5篇
  2018年   19篇
  2017年   14篇
  2016年   34篇
  2015年   6篇
  2014年   20篇
  2013年   83篇
  2012年   23篇
  2011年   23篇
  2010年   32篇
  2009年   34篇
  2008年   26篇
  2007年   22篇
  2006年   9篇
  2005年   19篇
  2004年   13篇
  2003年   11篇
  2002年   7篇
  2001年   7篇
  2000年   14篇
  1999年   3篇
  1998年   4篇
  1997年   7篇
  1996年   9篇
  1995年   19篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
551.
The vehicle travel velocity at pedestrian contact is considered to be an important parameter that affects the crash outcome. To reduce vehicle/pedestrian impact velocity, a collision damage mitigation braking system (CDMBS) using a sensor for pedestrian protection could be an effective countermeasure. The first purpose of this study is to clarify the relation between vehicle travel velocity and pedestrian injury severity due to differences in pedestrians’ ages in actual traffic accidents. The accident analyses were performed using vehicle-pedestrian accident data in 2009 from the database of the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. The result revealed that the fatality risk became higher with the increase in vehicle travel velocity. The second purpose of this study is to determine the safety performance of production vehicles equipped with the CDMBS for pedestrian protection. It was found that the CDMBS was highly effective in reducing the impact velocity from 50 km/h (vehicle travel velocity) to below 17 km/h, that could result in a significant decrease in fatality risk to be 2% or less. Additionally, the authors investigated a detectable zone with respect to a pedestrian’s position in relation to the vehicle. It was shown that the detectable zones for production vehicles tested were limited to be inside the vehicle front width.  相似文献   
552.
This work experimentally investigates how the dwell time between pilot injection and main injection influences combustion and emissions characteristics (NOx, CO, THC and smoke) in a single-cylinder DI diesel engine. The experiments were conducted using two fuel injection systems according to the fuel type, diesel or dimethyl ether (DME), due to the different fuel characteristics. The injection strategy is accomplished by varying the dwell time (10°CA, 16°CA and 22°CA) between injections at five main injection timings (?4°CA aTDC, ?2°CA aTDC, 0°CA aTDC, 2°CA aTDC and 4°CA aTDC). Results from pilot-main injection conditions are compared with those shown in single injection conditions to better demonstrate the potential of pilot injection. It was found that pilot injection is highly effective for lowering heat-release rates with smooth pressure traces regardless of the fuel type. Pilot injection also offers high potential to maintain or increase the BMEP; even the combustion-timing is retarded to suppress the NOx emission formation. Overall, NOx emission formation was suppressed more by the combustion phasing retard effect, and not the pilot injection effect considered in this study. Comparison of the emissions for different fuel types shows that CO and HC emissions have low values below 100 ppm for DME operation in both single injection and pilot-main injection. However, NOx emission is slightly higher in the earlier main injection timings (?4°CA aTDC, ?2°CA aTDC) than diesel injections. Pilot injection was found to be more effective with DME for reducing the amount of NOx emission with combustion retardation, which indicates a level of NOx emission similar to that of diesel. Although the diesel pilot-main injection conditions show higher smoke emission than single-injection condition, DME has little smoke emission regardless of injection strategy.  相似文献   
553.
The dynamic behavior of the engine organs in severe conditions is complicated to identify. In this paper, the dynamic behavior of the crankshaft of the diesel engine Deutz F8L413 direct injection-type air cooled in the severe operating conditions is investigated in a 3D global model. The maximum operating characteristics of the engine are experimentally measured on a bench test equipped with a hydraulic brake. The most stressed areas of the crankshaft are determined by numerical simulations. In addition, an analysis of the fatigue behavior of the crankshaft is carried out by using two fatigues criteria. The efficiency of the model is demonstrated by comparing between the numerical results and the experimental data obtained with the natural modes of vibration test.  相似文献   
554.
In a disc brake system, thermal expansion of the material is caused by friction energy that is generated by the sliding contact between a disc and pad during braking. This phenomenon, thermo-elastic instability, can lead to hot spots on the disc surface and a hot judder phenomenon. Transient finite element analysis has been used to simulate this phenomenon. Three dimensional finite element models of a disc, pad, and cylinder were created. Each part was connected by a joint. Contact condition was applied to the disc and pad with a friction coefficient (μ) of 0.4. A convective heat transfer coefficient was set as 40 W/m2K. Using a commercial program SAMCEF, the simulation of the thermo-mechanically coupled system was performed. In order to find the sensitive parameters of brake judder, sensitivity analysis was carried out with consideration for disc design parameters. As a result, the hot spot phenomenon was confirmed and hot judder was predicted. Moreover, the more sensitive parameters of the hot judder phenomenon were presented. Finally, an improved disc model and an analysis technique were verified by comparison to dynamo test results.  相似文献   
555.
As a research method, finite element analysis (FEA) with ABAQUS can help researchers to study throughout the whole process of abnormal tire wear. For precise tread wear simulation, this paper introduces a tire finite element model building method. Then, the model is verified by comparing its simulation results with experiment data. Based on the verified model, tire high-speed rolling procedure is presented by combining steady-state transport analysis and dynamic analysis. To predict the wear distribution, micro tread wear calculation method is described. Finally, the wear prediction procedure of tread mesh evolving is introduced and tire polygonal wear pattern is simulated by this procedure.  相似文献   
556.
During accident, the interlayer of windshield plays an important role in the crash safety of automotive and protection of pedestrian or passenger. The understanding of its energy absorption capability is of fundamental importance. Conventional interlayer material of automotive windshield is made by Polyvinyl butyral (PVB). Recently, a new candidate of high-performance nanoporous energy absorption system (NEAS) has been suggested as a candidate for crashworthiness. For the model problem of pedestrian head impact with windshield, we compare the energy absorption capabilities of PVB and NEAS interlayers, in terms of the contact force, acceleration, velocity, head injury criteria, and energy absorption ratio, among which results obtained from PVB interlayers are validated by literature references. The impact speed is obtained from virtual test field in PC-CRASH, and the impact simulations are carried out using explicit finite element simulations. Both the accident speed and interlayer thickness are varied to explore their effects. The explicit relationships established among the energy absorption capabilities, impact speed, and interlayer material/thickness, are useful for safety evaluation as well as automotive design. It is shown that the NEAS interlayer may absorb more energy than PVB interlayer and it may be a competitive candidate for windshield interlayer.  相似文献   
557.
At the idle engine speed, the exhaust discharge noise is influenced by resonances in the whole system, which is composed of connecting pipes and silencers. This pipe resonance radiates a high level of low frequency discharge noise, which is dominated by the low order harmonics of the engine firing frequency. This low frequency noise deteriorates the vehicle’s interior noise level and quality. The following study attempted to optimize the layout of an exhaust system to minimize low frequency noise by changing the position of silencers and the lengths of inlet and outlet pipes in each silencer. After modeling the exhaust system using four-pole parameters, the acoustical performance of the system was evaluated using the system insertion loss. In the optimization, the virtual attenuation coefficient, which corresponds to the amount of attenuation coefficient required for the silencers, was calculated to find a minimum value for the layout. The simulated annealing method, which is also known as finding an optimal, was employed in searching for the optimized exhaust layout. Test examples of two cases, for two and six design variables, were used. When the number of design variables was two, the positions of the center and rear silencers were considered. When the number of design variables was six, the positions of the two silencers and the lengths of the inlet and outlet pipes were considered. Three typical layouts for the exhaust system of each case were designed, including the given system and an optimal system. By comparing the predicted and measured discharge noise level, it was confirmed that the optimized exhaust layout has a higher noise reduction than the other layout designs.  相似文献   
558.
Nonlinear pricing (a form of second-degree price discrimination) is widely used in transportation and other industries but it has been largely overlooked in the road-pricing literature. This paper explores the incentives for a profit-maximizing toll-road operator to adopt some simple nonlinear pricing schemes when there is congestion and collecting tolls is costly. Users are assumed to differ in their demands to use the road. Regardless of the severity of congestion, an access fee is always profitable to implement either as part of a two-part tariff or as an alternative to paying a toll. Use of access fees for profit maximization can increase or decrease welfare relative to usage-only pricing for profit maximization. Hence a ban on access fees could reduce welfare.  相似文献   
559.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   
560.
[目的]在传统船用碳纤维复合材料层合板层间添加热塑性相材料能有效提升船用复合材料的抗冲击性能,为探究其冲击损伤特性,开展实验研究。[方法]使用光学显微镜观察层合板的热塑性/热固性界面,分析两相材料的结合方式;对不同结构的复合材料层合板进行低、中、高3种不同能量的低速冲击;通过超声C扫描与电子显微镜,对各试件的损伤形貌进行观测,以研究各试件的冲击响应及损伤机理。[结果]结果显示,相较于碳纤维层合板,含热塑性相的船用复合材料层合板具有更好的损伤阻抗;内部嵌膜层合板试件在冲击能量为8和12 J的冲击下,内部分层损伤分别减少了19%和39%,且受到12 J冲击后,内部结构损伤较小,完整性较好。[结论]将PEI热塑性膜嵌于内部能提升层合板的韧性,显著减少内部分层损伤,明显提升内部嵌膜层合板的抗冲击性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号