首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3578篇
  免费   22篇
公路运输   861篇
综合类   718篇
水路运输   1115篇
铁路运输   41篇
综合运输   865篇
  2023年   19篇
  2022年   39篇
  2021年   12篇
  2020年   7篇
  2019年   18篇
  2018年   384篇
  2017年   332篇
  2016年   335篇
  2015年   23篇
  2014年   91篇
  2013年   280篇
  2012年   149篇
  2011年   298篇
  2010年   300篇
  2009年   136篇
  2008年   272篇
  2007年   167篇
  2006年   41篇
  2005年   80篇
  2004年   70篇
  2003年   73篇
  2002年   37篇
  2001年   24篇
  2000年   34篇
  1999年   27篇
  1998年   16篇
  1997年   27篇
  1996年   28篇
  1995年   33篇
  1994年   13篇
  1993年   17篇
  1992年   18篇
  1991年   16篇
  1990年   8篇
  1988年   13篇
  1987年   7篇
  1986年   11篇
  1985年   18篇
  1984年   9篇
  1983年   10篇
  1982年   9篇
  1981年   9篇
  1980年   11篇
  1979年   11篇
  1978年   11篇
  1977年   11篇
  1976年   9篇
  1975年   13篇
  1974年   8篇
  1973年   6篇
排序方式: 共有3600条查询结果,搜索用时 875 毫秒
531.
The appearance and exterior precision of passenger cars aesthetics has become an important factor in the automotive industry. During vehicle assembly, the curvature of the roof can change slightly and create cosmetic defects that affect the exterior appearance. The critical factor causing curvature change on the roof is the thermally driven expansion of an elastomer-based mastic sealer which is applied between the exterior roof panel and support rail during the frame assembly process. Therefore the expansion of the mastic sealer was modeled to predict the curvature change in the roof panel. In order to evaluate the causes and predict the curvature change quantitatively, a Finite Element (FE) simulation of the oven heating and mastic curing was performed. Validation of the simulation model was performed by comparing the local deformation and amount of the curvature change on the roof obtained from the actual process. In order to minimize the curvature change, the Taguchi method was used in conjunction with the FE model where a total of eight factors were chosen to perform a sensitivity analysis. In order to exclude the deformation due to residual stress resulting from the oven process, it was selected as a noise factor. Response was taken as the maximum curvature change calculated by a flexural function which was used to distinguish absolute curvature that is not affected by the horizontal or vertical movement of roof panel. A total of 18 cases were analyzed with length of each sealer, pitch of sealer, and rail location being identified as the most influential factors affecting the curvature change. Using the optimum values, the amount of curvature change in the roof panel was reduced by 12 percent.  相似文献   
532.
This paper describes a pressure-model-based coordinated control method of a variable geometry turbine (VGT) and dual-loop exhaust gas recirculation (EGR) in a diesel engine air-path system. Conventionally, air fraction or burnt gas fraction states are controlled for the control of dual-loop EGR systems, but fraction control is not practical since sensors for fractions are not available on production engines. In fact, there is still great controversy over how best to select control outputs for dual-loop EGR systems. In this paper, pressure and mass flow states are chosen as control outputs without fraction states considering the availability and reliability of sensors. A coordinated controller based on the simple control-oriented model is designed with practical aspects, which is applicable for simultaneous operations of high pressure (HP) EGR, low pressure (LP) EGR, and VGT. In addition, the controller adopts the method of input-output linearization using back-stepping to solve the chronic problems of conventional pressure-based controllers such as coupling effects between operations of HP EGR, and VGT. The control performance is verified by simulation based on the proven GT-POWER model of a heavy-duty 6000cc diesel engine air-path.  相似文献   
533.
The Automatic Crash Notification (ACN) system is an effective technology to decrease the crash response time, improve the level of post-accident rescue and alleviate the severity of injuries. To realize this system, a vehicle terminal is developed. And based on a moving window integral algorithm, the trigger algorithm of ACN system is designed. By comparing the effect of different window widths on the trigger algorithm, we select the window width of the moving window integral algorithm as 8 ms. After system is triggered, different notify types was determined according to the change of velocity in the moving window. A sled impact simulation test shows that the impact can be identified rapidly and also the notify types can be judged by the trigger algorithm. A vehicle road test proves that the ACN system has no false trigger cases. The outcomes of this study support identifications of accidents and crash severities for both occupants and emergency centers.  相似文献   
534.
A modified thermostatic control strategy is applied to the powertrain control of a parallel mild hybrid electric vehicle (HEV) to improve fuel economy. This strategy can improve the fuel economy of a parallel mild HEV by operating internal combustion engine (ICE) in a high-efficiency region. Thus, in this study, experiments of a parallel mild HEV were conducted to analyze the characteristics of the hybrid electric powertrain and a numerical model is developed for the vehicle. Based on the results, the thermostatic control strategy was modified and applied to the vehicle model. Also, battery protection logic by using electrochemical battery model is applied because the active usage of battery by thermostatic control strategy can damage the battery. The simulation results of the vehicle under urban driving conditions show that the thermostatic control strategy can improve the vehicle’s fuel economy by 3.7 % compared with that of the conventional strategy. The results also suggest that the trade-off between the fuel economy improvement by efficient ICE operation and the battery life reduction by active battery usage should be carefully investigated when a thermostatic control strategy is applied to a parallel mild HEV.  相似文献   
535.
Based on non-thermal plasma (NTP) technology fed by oxygen and air as the gas source respectively, the experimental system of exhaust gas recirculation (EGR) cooler regeneration was built to do a study at different regeneration temperatures. By measuring the concentration of main active substance and COx in regeneration process, the influence of temperature on regeneration aided by oxygen-fed NTP and air-fed NTP was investigated. The experimental results indicate that EGR cooler can be regenerated both by air-fed NTP and oxygen-fed NTP at a wide temperature range of 18 °C ~ 300 °C. By comparison of the regeneration with oxygen-fed NTP and air-fed NTP, it can be easily known that the regeneration effect is most remarkable at 150 °C with oxygen-fed NTP and at 120 °C with air-fed NTP. In addition, when the temperature is below 150 °C especially at 120 °C, the regeneration efficiency of air-fed NTP is lower than oxygen-fed NTP, nevertheless, when the temperature is above 150 °C, air-fed NTP has a superiority in regeneration and the higher the temperature is, the more obvious the superiority will be.  相似文献   
536.
Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.  相似文献   
537.
This paper presents an integration method of AUTOSAR-compliant ECUs which can evaluate resource constraints in an early-stage of development. There are three types of resources for an ECU (timing, memory, and interface) which should be carefully managed for successful ECU integration. The proposed method consists of three steps: measurement, prediction, and evaluation. In the first step, a method to measure resource factors for AUTOSAR-compliant software architecture is introduced. Based on the method, a worst-case execution cycle of a runnable, memory section usages of a software component, and interface of legacy ECUs can be obtained. In the second step, the obtained factors are quantitatively predicted according to the architectural designs of the integration ECU. In the case of the timing resource, the worst-case execution time of the integration ECU can be precisely predicted by a proposed empirical model. In the last step, the resource constraints such as CPU, memory, network utilizations can be evaluated with predicted resource factors before implementation. The proposed method was applied to the integration of an in-house engine management system composed of two ECUs. The method successfully provided quantitative measures to evaluate architectural designs of three different integration scenarios.  相似文献   
538.
Numerous research has been devoted to finding a method to simultaneously reduce NOx and soot emissions from diesel engines. In-cylinder EGR stratification is a technique that simultaneously reduces NOx and soot using a nonuniform EGR distribution in the combustion chamber. To study the potential of in-cylinder EGR stratification, a new combustion model is required that considers the non-uniform EGR distribution and the chemical kinetics. In this study, a new combustion model, the Flamelet for Stratified EGR (FSE) model, was developed to consider the non-uniform in-cylinder gas distribution based on chemical kinetics. The concept of the FSE model is based on using multiple flamelets with the multizone concept. To describe the non-uniform gas distribution, the combustion chamber is divided into several zones by oxygen concentration at the start of injection. Then, the flamelet equations are solved at the boundary of each zone. The final species mass fraction of each cell is calculated using linear interpolation between two results from the boundaries. In this paper, the FSE model was validated under in-cylinder EGR stratification conditions, and then, the potential of in-cylinder EGR stratification was studied by using the FSE model. The effect of in-cylinder EGR stratification was verified under various injection timing, engine speed, and road conditions with optimized engine geometries. The results shows simultaneous NOx and soot reductions under the stratified EGR condition.  相似文献   
539.
At conceptual design stage, beam element is extensively used to create the frame structure of automobile body, which can not only archive the accurate stiffness but also reduce much computational cost. However, the stress definition of beam element is very complex so that the stress sensitivity and optimization are difficult to analytically derive and numerically program. This paper presents an solution to this problem and an application in the lightweight optimization design of automobile frame. Firstly, maximal Von Mises stress of rectangular tube is calculated by using the superposition of stress, which is together induced by the axial force, bending moments, torsional moment and shear force. Secondly, the sensitivity of Von Mises Stress with respect to size design variables: breadth, height and thickness are derived, respectively. Thirdly, an optimal criterion is constructed by Lagrangian multiplier method to solve the frame optimization with stress constraints. Lastly, numerical example of car frame proves that the proposed method can guarantee the stress of each beam element almost fully reaches at the yielding stress.  相似文献   
540.
This paper proposes á degree of fault isolability concept and active fault diagnosis method for redundantly actuated vehicle systems. Fault isolability is a structural property related to system dynamics and composition of actuators and sensors. Existing research on testing fault isolability has involved checking whether the system is isolable, i.e., binary in nature. A continuous value rather than a binary metric is needed to evaluate how isolable a given system fault is based on a specific measurement set. After fault components are isolated, the fault type and magnitude are estimated by analyzing residual vectors. In a redundantly actuated system, the number of controls/actuators is greater than the system mobility. Thus, the control input distribution to achieve a given control objective is not unique. In the case of a fault, the active fault diagnosis system adjusts the control input distribution to diagnose the fault. Thus, much more system information can be identified by additional excitation through a redundantly actuated system, which improves the fault diagnosis performance. Simulation results of a four-wheel independently driven and steered vehicle model validated the proposed degree of fault isolability and the effectiveness of the proposed active fault diagnosis method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号