首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1372篇
  免费   13篇
公路运输   378篇
综合类   84篇
水路运输   440篇
铁路运输   55篇
综合运输   428篇
  2023年   14篇
  2022年   30篇
  2021年   12篇
  2020年   11篇
  2019年   15篇
  2018年   37篇
  2017年   28篇
  2016年   54篇
  2015年   19篇
  2014年   56篇
  2013年   201篇
  2012年   60篇
  2011年   66篇
  2010年   63篇
  2009年   79篇
  2008年   73篇
  2007年   45篇
  2006年   35篇
  2005年   32篇
  2004年   23篇
  2003年   18篇
  2002年   18篇
  2001年   23篇
  2000年   14篇
  1999年   20篇
  1998年   22篇
  1997年   26篇
  1996年   19篇
  1995年   32篇
  1993年   9篇
  1992年   10篇
  1991年   16篇
  1989年   11篇
  1988年   12篇
  1987年   8篇
  1986年   8篇
  1985年   14篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   13篇
  1980年   13篇
  1979年   10篇
  1978年   11篇
  1977年   19篇
  1976年   12篇
  1975年   12篇
  1974年   11篇
  1973年   8篇
  1972年   8篇
排序方式: 共有1385条查询结果,搜索用时 15 毫秒
101.
This paper describes two types of rail transportation problems in detail. These are train routing and makeup, and empty car distribution problems. Some of the recent optimization models which address these problems are reviewed and the areas for potential improvements in rail transportation literature are identified. The type of interactions which exist between routing, makeup, and empty car distribution decisions are highlighted and potential areas for future research are identified.  相似文献   
102.
This paper presents a view of the current state of monitoring track geometry condition from in-service vehicles. It considers technology used to provide condition monitoring; some issues of processing and the determination of location; how things have evolved over the past decade; and what is being, or could/should be done in future research. Monitoring railway track geometry from an in-service vehicle is an attractive proposition that has become a reality in the past decade. However, this is only the beginning. Seeing the same track over and over again provides an opportunity for observing track geometry degradation that can potentially be used to inform maintenance decisions. Furthermore, it is possible to extend the use of track condition information to identify if maintenance is effective, and to monitor the degradation of individual faults such as dipped joints. There are full unattended track geometry measurement systems running on in-service vehicles in the UK and elsewhere around the world, feeding their geometry measurements into large databases. These data can be retrieved, but little is currently done with the data other than the generation of reports of track geometry that exceeds predefined thresholds. There are examples of simpler systems that measure some track geometry parameters more or less directly and accurately, but forego parameters such as gauge. Additionally, there are experimental systems that use mathematics and models to infer track geometry using data from sensors placed on an in-service vehicle. Finally, there are systems that do not claim to measure track geometry, but monitor some other quantity such as ride quality or bogie acceleration to infer poor track geometry without explicitly measuring it.  相似文献   
103.
This paper establishes the simulation model of a city bus on the basis of the EQ6110 bus prototype and its experimental data. According to the actual urban driving cycle, the fuel economy and the traction performance of the EQ6110 city bus have been simulated, and factors such as the driving cycle, the loss of power to engine accessories, the gear-shifting strategy, the fuel shut-off strategy of the engine, etc., which influence on the bus’s fuel economy, are also quantitatively analyzed. Some conclusions are drawn as follows: (1) driving cycles have a great influence on the fuel economy of a city bus; (2) under the typical urban driving cycle of the public bus in China, the engine fuel shut-off strategy can save about 1 to 1.5 percent of the fuel consumption; and (3) the optimized gear-shifting rules can save 6.7 percent of the fuel consumption. Experimental results verify that the fuel economy for the EQ6110 public bus is improved by 7.2 pecent over the actual Wuhan urban driving cycle of the current public bus in China.  相似文献   
104.
This work studies the impact of five parameters: CO and HC engine-out emissions, space velocity, average value and profile of exhaust temperature, on Diesel CO and HC tail-pipe emissions. The first part of this work is conducted on a reactor and shows that both HC and CO light-off temperature increases with CO and HC input concentration. CO and HC initial concentration influence the adsorption/desorption capacities of HC only at high temperatures. Space velocity also influences CO and HC conversion efficiency. The second part of this work studies the impact of different combinations of HC and CO engine-out emissions on CO and HC conversion and tail-pipe emissions in the case of New European Driving Cycle. This part proposes that a Diesel oxidation catalyst must be mainly studied at the Urban Part of NEDC, as the CO and HC conversions are very high at the extra-urban part of NEDC. CO and HC conversion efficiencies are also dependent on exhaust temperature and catalytic volume. In the case of two different profiles of exhaust temperature with the same average temperature, CO and HC conversion efficiency is lower in the case of the smoother profile.  相似文献   
105.
Air suspension systems have been implemented in various commercial vehicles, such as buses and special purpose trucks, because of the comfortable ride and easy height control. An evaluation of the durability of vehicle parts has been required for service life and safety starting in the early stages of design. The cyclic load applied to the vehicle can cause fatigue failure of parts, such as the suspension frame. This paper presents a method to predict the fatigue life of the suspension frame at the design stage of the air suspension system used in a heavy-duty vehicle. To estimate the fatigue life using the SN method, the Dynamic Stress Time History (DSTH) is necessary for the part of interest. DSTH can be obtained from the results of the flexible body dynamic analysis using the Belgian road simulation and the Modal Stress Recovery (MSR) method. Furthermore, the reliability of the predicted fatigue life can be evaluated by considering the variations in material properties. The probability and distribution of the expected life cycle can be obtained using experimental design with a minimum number of simulations. The advantage of using statistical methods to evaluate the life cycle is the ability to predict replacement time and the probability of failure of mass-produced parts. This paper proposes a rapid and simple method that can be effectively applied to the design of vehicle parts.  相似文献   
106.
A fault detection method with parity equations is proposed in this paper. Due to its low cost implementation, the velocity of the motor is not measurable in electric parking brake (EPB) systems. Therefore, residuals are not reliable when estimating the motor velocity with a low-resolution encoder. In this paper, we propose a fault detection method with sensorless estimation using current ripples that estimates the position and velocity of the motor by detecting periodical oscillations of the armature current caused by rotor slots. In addition, this method can estimate the position and velocity of the motor with less computational effort than a state observer. Moreover, the method is less sensitive to motor parameters than model-based estimation methods. The effectiveness of this method is validated with experimental data, and the simulation results show that various faults have their own residual patterns. Therefore, we can detect the presence of faults by monitoring the residual signals.  相似文献   
107.
A 3000 cc diesel engine attached to an engine dynamo was used to test three newly developed electrostatic Diesel Particulate matter filtration Systems (DPS 1, 2, and 3) under four steady-state engine operating conditions: idle, 2000 rpm with no load, and 2000 rpm under 25% and 50% loads. Of the two developed alternatives, DPS 1 and DPS 2, DPS 2 comprises an ionization section, electrostatic field additional section and Flow-Through Filter (FTF), which achieved almost 90% removal of particulate matter (PM) under the engine’s operating conditions, and the efficiency of the FTF was maintained between 20% and 50%. Comparing the long-term performance of DPS 2 and DPS 3 (effectively a serial combination of two DPS 2s) with a commercially-available Diesel Particulate Filter (DPF), the DPS 2 and DPS 3 achieved almost the same efficiency for removing PM as the DPF but had significantly improved (75%∼90% lower) differential pressure drops.  相似文献   
108.
A roller vane type liquefied petroleum gas (LPG) pump was developed for a liquid phase LPG injection (LPLi) engine. Most of the LPG pumps used in the current LPLi engines are installed inside of the LPG tank, but this pump is intended to be installed outside of the LPG tank to overcome the difficulty of fixing an in-tank pump. Because LPG has a low boiling point and high vapor pressure, it usually causes cavitation in the pump and consequently deteriorates the flow rate of the pump. The purpose of this work is to optimize the design of the roller vane pump in order to suppress cavitation and increase the fuel flow rate by using a computational fluid dynamics (CFD) analysis. In order to achieve these goals, the intake port configuration and the rotor of the roller vane pump were redesigned and simulated using STAR-CD code. Computation was performed for six different models to obtain the optimized design of the roller vane pump at a constant speed of 2600 rpm and a constant pressure difference between the inlet and outlet of 5 bar. The computation results show that an increased intake port cross-section area can suppress cavitation, and the pump can achieve a higher flow rate when the rotor configuration is changed to increase its chamber volume. When the inlet pressure difference is 0.1 bar higher than the fluid saturation pressure, the pump reaches its maximum flow rate.  相似文献   
109.
Vehicles can experience impacts due to harsh road conditions. Contact with an uneven road surface causes vehicles to vibrate, which generates a loud impact sound. The attenuation of such noise is important because car passengers may complain about the impact noise. However, perfect removal of impact noise is not possible because most of it is caused by external conditions. More research is needed on the objective attributes of impact noise; however, the problem of impact noise is not a simple matter because impact noise is transient in nature and reaches a high level instantaneously. In this paper, a new objective attribute of impact noise is designed using the wavelet transform, which is appropriate for analyzing nonstationary signals, such as an impact signal. The usefulness of the new objective attribute, which is a sound metric, is examined by comparing the mean subjective ratings for real impact noise in passenger cars. The new sound metric has better correlation with the mean subjective rating than currently existing sound metrics.  相似文献   
110.
Variable Nozzle Turbocharger (VNT) was invented to solve the problem of matching an ordinary turbocharger with an engine. VNT can harness exhaust energy more efficiently, enhance intake airflow response and reduce engine emissions, especially during transient operating conditions. The difficulty of VNT control lies in how to regulate the position of the nozzle at different engine working conditions. The control strategy designed in this study is a combination of a closed-loop feedback controller and an open-loop feed-forward controller. The gain-scheduled proportional-integral-derivative (PID) controller was implemented as the feedback controller to overcome the nonlinear characteristic. As it is difficult to tune the parameters of the gain-scheduled PID controller on an engine test bench, system identification was used to identify the plant model properties at different working points for a WP10 diesel engine on the test bench. The PID controller parameters were calculated based on the identified first-order-plus-dead-time (FOPDT) plant model. The joint simulation of the controller and the plant model was performed in Matlab/Simulink. The time-domain and frequency-domain performances of the entire system were evaluated. The designed VNT control system was verified with engine tests. The results indicated that the real boosting pressure traced the target boosting pressure well at different working conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号