首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
公路运输   5篇
水路运输   11篇
综合运输   9篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
21.
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate.  相似文献   
22.
This paper is a stochastic risk simulation of the impact of proposed federal tonnage limits on US Maritime Security Fleet (MSF) bagged food aid shipments. Only MSF (i.e. federally subsidized carriers/vessels for war, or emergencies) and non-MSF US carriers (therefore, at competitive disadvantage) can compete for such shipments—representing an indirect subsidy to both groups. To compensate, US Congress proposed a financial penalty (loss of voyage subsidy) on MSF carriers for food aid above a certain limit. Accordingly, certain carriers will be policy 'winners' (non-MSF—larger food aid shipments), and others 'losers' (MSF). By simulating loss-minimizing economic behaviour by MSF carriers—using five stochastic factors—I obtain losses substantially below those claimed by the MSF owners.

Simulated annual-average MSF profits reduction is $3.5 million—within a large confidence interval; if no carriers surrender their subsidies (as claimed by MSF owners), a reduction of $6.0 million. Only 16% of annual MSF voyages are affected by a 2,500-ton limit (3%; 5,000-ton limit). Minimizing losses, 25 (of 41 affected) annual MSF voyages replace 38,000 tons of food aid with 23,000 tons of other cargo—forgoing $2.1 million in yearly direct subsidies. Two assumptions explain most of this simulated loss reduction.  相似文献   
23.
Active Suspension Control to Improve Vehicle Ride and Handling   总被引:3,自引:0,他引:3  
In practice most active vehicle suspension work can be traced to two sources, Lotus' modal control and Karnopp's skyhook damper. A model is developed which allows comparison of different active suspension control algorithms. The Lotus modal control algorithm is reviewed, and compared with Karnopp's skyhook damper. It is shown that a tight inner closed loop allows the Lotus algorithm to achieve the inertial damping described by Kamopp for a single comer or quarter car. It is suggested that to achieve simultaneously high inertial damping and good disturbance rejection an inner force loop is desirable. A vehicle control scheme is presented which combines the Lotus modal decomposition with Karnopp's skyhook damper, allowing nearly optimal ride and simultaneously permitting modification of vehicle handling properties.  相似文献   
24.
We used expert elicitation to examine potential responses of eelgrass to several restoration strategies in Puget Sound. Restoration strategies included shoreline armor removal and modification, removal and modification of overwater structures, and efforts to improve water clarity via reductions in anthropogenic nutrient and sediment loadings. Expert responses indicated a general belief that reducing stressors would increase eelgrass cover; however, responses varied greatly among stressors. Our analyses revealed that removal of overwater structures, nutrient loading and shoreline armoring will have significantly larger effects on eelgrass recovery than would removal of sediment loading, with removal of overwater structures having the largest effect. We then used a probabilistic model to estimate what actions, singularly or in combination, could yield a large increase in eelgrass cover. Reducing single stressors could, in theory, result in recovery of eelgrass in Puget Sound; however, the magnitude of actions required would be so great that it is likely not practical. In contrast, we identified combinations of smaller reductions of stressors that could achieve significant eelgrass recovery. For example, a 40% reduction in overwater structures, combined with 20% reductions in shoreline armor, and nutrient and sediment loadings, was predicted to be one of the more feasible combinations of actions for meeting the target. The importance of eelgrass to Puget requires prompt input of scientific advice, and this work fills an important knowledge gap in the face of rapidly approaching legislative deadlines. While coded expert opinion of the sort we use here is a weak substitute for data, our work clarifies the current extent of scientific uncertainty that can guide management action in the near term and scientific research in the long term.  相似文献   
25.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号