首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2733篇
  免费   17篇
公路运输   660篇
综合类   677篇
水路运输   852篇
铁路运输   29篇
综合运输   532篇
  2024年   2篇
  2023年   19篇
  2022年   47篇
  2021年   9篇
  2020年   10篇
  2019年   3篇
  2018年   404篇
  2017年   308篇
  2016年   301篇
  2015年   22篇
  2014年   80篇
  2013年   84篇
  2012年   123篇
  2011年   277篇
  2010年   286篇
  2009年   118篇
  2008年   235篇
  2007年   142篇
  2006年   16篇
  2005年   66篇
  2004年   49篇
  2003年   65篇
  2002年   22篇
  2001年   5篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有2750条查询结果,搜索用时 15 毫秒
941.
By using a self-designed non-thermal plasma (NTP) injection system, an experimental study of the regeneration of DPF was conducted at different temperatures, where oxygen as the gas source. The results revealed that PM can be decomposed to generate CO and CO2 by these active substances O3, O which was generated through the discharge reaction of NTP reactor. With the increasing of test temperature, the mass of C1 (C in CO) shows a overall downward trend while the mass of C2 (C in CO2) and C12 (C1 and C2) increase firstly and then decrease. When the test temperature is 80°C, the backpressure of DPF decreases fastest and the regenerative effect is remarkable. DPF can be regenerated by NTP technology without any catalyst at a lower temperature. Compared with the traditional regeneration method, the NTP technology has its superiority.  相似文献   
942.
A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit voltage and the internal resistance map based on experiments are used. The Butler-Volmer equation is directly considered for activation voltage loss estimation. The heat generation of cells and the heat transfer from cells are also calculated to estimate temperature distribution. Validations are conducted by comparison between experimental results at the cell level and the pack level. After validations, the effects of module arrangement in a battery pack are studied with different ambient temperature conditions. The configuration that more LiB cells are placed near the air flow inlet is more effective to reduce the temperature deviation between modules.  相似文献   
943.
The ESC system, since its introduction in the mid 90s, has greatly contributed to prevention of vehicle accidents with its capability of maintaining vehicle stability in severe driving conditions. Due to its significant advantages, many nations are now adopting regulations that mandate installation of the ESC system in all classes of passenger vehicles — from mini to luxury. Accordingly it became important to know whether an ESC ECU can yield good performance on a wide range of vehicle parameter changes. In this paper, robustness analysis was conducted to study how characteristic variation of the main chassis components affect the performance of the ESC ECU. This analysis was carried out using a HILS system built on an actual ESC ECU. The variation range of each chassis component was carefully selected considering the component’s design criteria adopted in automotive industries. Based upon the robustness analysis results, the allowable variation ranges of the chassis components for ensuring sound performance of an ESC ECU were proposed.  相似文献   
944.
An autonomous braking system is designed using the prediction of the stopping distance. The stopping distance needs to be determined by considering several factors such as the desired deceleration and the speed of the hydraulic brake actuator. In particular, the actuator speed is very critical because it affects the shape of the deceleration response and it determines the accuracy of the predicted stopping distance. The autonomous braking control algorithm is designed based on the predicted stopping distance. The proposed autonomous braking system has been validated in autonomous vehicle tests and demonstrates that the subject vehicle can avoid the collision effectively.  相似文献   
945.
This paper proposes a design and implementation of an auxiliary mode, hybrid electric scooter (HES) by means of more cost-effective way for improving scooter’s performance and efficiency. The HES is built in a parallel hybrid configuration with a 24V 370W auxiliary power electric motor, a 24V 20AH battery, and an electronically controlled fuel injection internal combustion engine (ICE) scooter. In contrast to hybrid electric vehicles (HEVs), the issues concerning cost, volume, and reliability are even more rigorous when developing hybrid electric scooters (HESs). Therefore, the drive topology and control strategy used in HEV cannot be applied to HES directly. In order to hasten the developing phase and achieve the parametric tune-up of the HES component, a dynamic simulation model for the HES is developed here. Because the powertrain system is complex and nonlinear in nature, the simulation model utilizes mathematical models in tandem with accumulated experimental data. The method about the mathematical model construction, analysis and simulation of the hybrid powertrain used in a scooter are fully described. The efficacy of the model was verified experimentally on a scooter chassis dynamometer and the performance of the proposed hybrid powertrain is studied using the developed model under a representative urban driving cycle. Finally, Simulation and experimental results confirm the feasibility and prosperity of the proposed hybrid HES and indicate that the designed hybrid system can improve the fuel consumption rate up to 15% compared with the original scooter.  相似文献   
946.
The Flexible Pedestrian Legform Impactor (Flex-PLI) consisting of a flexible femur and tibia will be tested for pedestrian protection by Euro NCAP within the next couple of years as a potential replacement for the Transport Research Laboratory (TRL) legform impactor. The injury risks that are measured when using Flex-PLI are the elongation of the anterior/posterior cruciate ligament (A/PCL), elongation of the medial collateral ligament (MCL), and tibia bending moment (TBM). In this study, we used a correlated computer-aided engineering (CAE) model to conduct a contribution analysis of each injury with regard to the changes in the location of the frontal structures based on the results of a design of experiments (DOE) and analysis of variance (ANOVA). The frontal structures that were selected as control factors were the energy absorber (EA), lower bumper stiffener (LBS), and hood angle. A kriging interpolation model was developed using the DOE results, and its results were compared with those of the CAE model. Furthermore, for robust design optimization, the speed and height of Flex-PLI were used as the noise factors. Finally, a robust design optimization was carried out using the optimal combination of the discrete control factors for minimizing MCL elongation.  相似文献   
947.
A new approach to develop human driver models (HDMs) is proposed in accordance with the drivers’ generic human factors, i.e., gender, age, and experience, to develop more realistic vehicle simulations. The HDMs consist of three independent and stepwise models with functioning driver’s information processing stages based on the human factors: constructing drivers’ preview distance (PVD) models as a ‘cognition process’, implementing a finite preview optimal control algorithm as a ‘decision process’, and differentiating an ‘operation process’ according to neuromuscular efficiency. Eight different groups of 65 drivers with a 2 × 2 × 2 within-subject design participated in both the PVD estimates and neuromuscular efficiency tests to develop a set of statistically different HDMs. Regarding the preview distance models, an analysis of covariance (ANCOVA) procedure was adopted with two covariates (i.e., vehicle velocity and road curvature), while analyses of variance (ANOVAs) were performed on the neuromuscular efficiency parameters. The ANCOVA procedure produced eight significantly different cognition processes, whereas the ANOVAs revealed gender differences for the drivers’ neuromuscular systems. Moreover, an integrated vehicle simulation was configured with the HDMs using Carsim and Simulink software to observe the differential effects of both the cognition and operation processes on a double-lane-change (DLC) maneuver. During the simulations, gender differences in real-world DLC tests were also identified, especially between the male-oldexpert and the female-young-novice HDMs. The results presented in this study suggest that differentiating HDMs according to human factors is an essential process when utilizing vehicle simulations in the early stage of developing an intelligent vehicle system.  相似文献   
948.
In accordance with the development of hardware configurations in diesel engines, research on model-based control for these systems has been conducted for years. To control the air management system of a diesel engine, the exhaust manifold pressure should be selected as one of the control targets due to its internal dynamic stability and its physical importance in model-based control. However, it is difficult to measure exhaust pressure using sensors due to gas flow oscillation in the exhaust manifold in a reciprocated diesel engine. Moreover, the sensor is too costly to be equipped on production engines. Hence, the estimation strategies for exhaust manifold pressure have been regarded as a primary issue in diesel engine air management control. This paper proposes a new estimation method for determining the exhaust manifold pressure based on compressor power dynamics. With its simple and robust structure, this estimation leads to improved control performance compared with that of general observers. To compensate for the compressor efficiency error that varies with turbine speed, some correction maps are adopted in the compressor power equation. To verify the control system performance with the new estimator, a HiLS (hardware in the loop simulation) of the NRTC mode is performed. Experimental verification is also conducted using a test bench for the C1-08 mode.  相似文献   
949.
Recently, biodiesel has emerged as an alternative fuel for achieving low-temperature combustion (LTC). Several articles in the literature have showed that oxygenated biofuels, including biodiesel, can improve combustion stability under high exhaust gas recirculation (EGR) operation, which is considered to be necessary for the removal of nitric oxides (NOx). The objective of this study was to investigate the performance and emissions of 20% biodiesel blended diesel fuel (B20) at various intake pressures and oxygen concentration levels to characterize the fuel for LTC application. The experimental investigation of B20 was carried out using a single-cylinder engine (SCE) at 1400 rpm and 50% load condition. A set of critical flow orifices with synthetic EGR was employed to simulate various intake pressures and EGR levels. The behavior of the B20 was first characterized under various intake conditions. The results showed that with high oxygen intake, B20 exhibited combustion and emission levels that were very similar to conventional diesel. However, B20 reduced combustion deterioration while exhibiting lower carbon monoxide (CO) and hydrocarbon (HC) emissions than diesel under low oxygen intake conditions.  相似文献   
950.
FTP75 driving cycle is used in many countries for evaluation of vehicle fuel economy. FTP75 has 3 phases, where the Phase 1 and the Phase 3 have a same velocity profile, but the Phase1, which is known as cold start phase, shows lower fuel efficiency than the Phase 3. In order to analyze the difference of fuel economy between Phase 1 and Phase 3, vehicle tests are performed. The test results show that the differences of fuel economy is ranging from 3.9% to 18.5%. The factors of the difference of fuel economy for gasoline automatic transmission vehicles are analyzed in this research. The key factors affecting the difference of fuel economy are engine friction loss, torque converter loss and accessory loss. The quantitative analysis of these factors is performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号