首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   15篇
公路运输   435篇
综合类   25篇
水路运输   167篇
铁路运输   28篇
综合运输   144篇
  2024年   2篇
  2023年   19篇
  2022年   46篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   84篇
  2017年   22篇
  2016年   50篇
  2015年   16篇
  2014年   64篇
  2013年   67篇
  2012年   49篇
  2011年   64篇
  2010年   68篇
  2009年   55篇
  2008年   47篇
  2007年   22篇
  2006年   15篇
  2005年   16篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有799条查询结果,搜索用时 125 毫秒
91.
The dynamic interaction between the catenary and the pantographs of high-speed trains is a very important factor that affects the stable electric power supply. In order to design a reliable current collection system, a multibody simulation model can provide an efficient and economical method to analyze the dynamic behavior of the catenary and pantograph. In this article, a dynamic analysis method for a pantograph-catenary system for a high-speed train is presented, employing absolute nodal coordinates and rigid body reference coordinates. The highly flexible catenary is modeled using a nonlinear continuous beam element, which is based on an absolute nodal coordinate formulation. The pantograph is modeled as a rigid multibody system. The analysis results are compared with experimental data obtained from a running high-speed train. In addition, using a derived system equation of motion, the calculation method for the dynamic stress in the catenary conductor is presented. This study may have significance in providing an example that a structural and multibody dynamics model can be unified into one numerical system.  相似文献   
92.
介绍名古屋东部丘陵线的概况和该线所用的磁悬浮运输系统、磁悬浮车辆的技术特点.  相似文献   
93.
Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery.  相似文献   
94.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited due to data availability, the results indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling.  相似文献   
95.
It is known that loss of directional stability during braking occurs in many road accidents involving tractor-semitrailers. To minimize the undesired directional response, the correct order of locking of the wheels is of importance and should receive greater attention. This paper examines the effects of operational and design parameters on the sequence of locking of the wheels of tractor-semitrailers. The way in which the correct locking sequence may be achieved is also discussed in detail.  相似文献   
96.
The state-of-the-art in analysing a number of ground manoeuvring processes on aircraft is described. The mathematical models are as good as the data supplied to them.  相似文献   
97.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   
98.
This study proposes an aerodynamically optimized outer shape of a sedan by using an Artificial Neural Network (ANN), which focused on modifying the rear body shapes of the sedan. To determine the optimization variables, the unsteady flow field around the sedan driving at very fast speeds was analyzed by CFD simulation, and fluctuations of the drag coefficient (C D ) and pressure around the car were calculated. After consideration of the baseline result of CFD, 6 local parts from the end of the sedan were chosen as the design variables for optimization. Moreover, an ANN approximation model was established with 64 experimental points generated by the D-optimal methodology. As a result, an aerodynamically optimized shape for the rear end of the sedan in which the aerodynamic performance is improved by about 5.64% when compared to the baseline vehicle is proposed. Finally, it is expected that within the accepted range of shape modifications for a rear body, the aerodynamic performance of a sedan can be enhanced so that the fuel efficiency of the sedan can be improved. The YF SONATA, a sedan manufactured by Hyundai Motors Corporate, played a major role in this research as the baseline vehicle.  相似文献   
99.
The most important factor in gas strut design is determining an optimized layout. If the layout is not optimized, vehicle operators will have a suboptimal experience when opening and closing the tailgate. A poor layout of the gas struts causes operators to work excessively when they open/close the tailgate, and vehicle owners will incur additional expenses due to deterioration in the body quality of the vehicle. Thus, an optimized gas strut layout is very important, even if it does not seem interesting. This paper describes the tailgate operation process and focuses on determining an optimized gas strut layout for opening/closing the tailgate easily.  相似文献   
100.
Fuel cell hybrid vehicles (FCHVs) have become one of the most promising candidates for future transportation due to current energy supply problem and environmental problem. Fuel economy is an important factor in FCHVs. In order to properly evaluate the fuel economy of an FCHV, the initial battery state of charge (SOC) and the final battery SOC have to be identical so that the effect of the battery energy usage on the fuel economy is neglected. In the simulation or in the real driving, however, the final battery SOC is usually different from the initial battery SOC, and the final battery SOC often depends on the power management strategy. To consider the difference between the two battery SOC values, the concept of equivalent fuel consumption is presented by two methods. One is based on the relationship between delta SOC and delta fuel consumption, and the other is based on the optimal control theory. Two rule-based power management strategies for an FCHV are presented, and for each strategy, the fuel economy is evaluated based on the two methods. The characteristics of the two methods are discussed and compared, and the superior one is selected based on the comparison.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号