首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2587篇
  免费   21篇
公路运输   948篇
综合类   84篇
水路运输   796篇
铁路运输   73篇
综合运输   707篇
  2023年   26篇
  2022年   72篇
  2021年   22篇
  2020年   17篇
  2019年   23篇
  2018年   132篇
  2017年   84篇
  2016年   111篇
  2015年   32篇
  2014年   120篇
  2013年   357篇
  2012年   135篇
  2011年   146篇
  2010年   140篇
  2009年   143篇
  2008年   132篇
  2007年   67篇
  2006年   54篇
  2005年   53篇
  2004年   38篇
  2003年   40篇
  2002年   30篇
  2001年   29篇
  2000年   41篇
  1999年   31篇
  1998年   32篇
  1997年   42篇
  1996年   36篇
  1995年   50篇
  1994年   24篇
  1993年   26篇
  1992年   16篇
  1991年   12篇
  1990年   15篇
  1989年   13篇
  1988年   16篇
  1987年   14篇
  1986年   11篇
  1985年   19篇
  1984年   17篇
  1983年   15篇
  1982年   22篇
  1981年   28篇
  1980年   18篇
  1979年   34篇
  1978年   12篇
  1977年   18篇
  1976年   9篇
  1975年   10篇
  1973年   8篇
排序方式: 共有2608条查询结果,搜索用时 599 毫秒
701.
The power management strategy in many hybrid vehicles is based on expert rules and thresholds. These rule-based strategies can result in good efficiency in term of fuel economy and emissions if their thresholds and rules are accurate. However, due to the complexity and the non-linearity of the hybrid powertrain, determining accurate thresholds and rules is neither explicit nor straightforward, and experts in most cases fail to define these thresholds and rules with enough accuracy. Based on this fact, the objective of this paper is to propose a method to improve this rule-based strategy by refining its thresholds and rules. To achieve this, we used an optimization method (dynamic programming) to calculate the optimal power management, determine the optimal control signals, and extract efficient thresholds and rules that can be used in real time. Finally, simulation results for the three strategies (optimal, simple and refined strategy) are shown and discussed.  相似文献   
702.
Homogeneous charge compression ignition (HCCI) engines have the potential to raise the efficiency of reciprocating engines during partial load operation. However, the performance of the HCCI engine at high loads is restricted by severe knocking, which can be observed by the excessive pressure rise rate. This is due to the rapid combustion process occurring inside the cylinder, which does not follow the flame propagation that is seen in conventional engines. In this study, a low compression ratio of 9.5:1 for a gasoline engine was converted to operate in HCCI mode with the goal being to expand the stable operating region at high loads. Initially, pure n-heptane was used as the fuel at equivalence ratios of 0.30 to 0.58 with elevated intake charge temperatures of 180 and 90 °C, respectively. The n-heptane HCCI engine could reach a maximum performance at an indicated mean effective pressure (IMEP) of 0.38 MPa, which was larger than the performance found in the literature. To reach an even higher performance, a dual-fuel system was exploited. Methanol, as an anti-detonant additive, was introduced into the intake stream with various amounts of n-heptane at fixed equivalence ratios in the range of 0.42 to 0.52. It was found that the methanol addition cooled the mixture down prior to combustion and resulted in an increased coefficient of variation (COV). In order to maintain stable combustion and keep the pressure rise rate below the limit, the intake charge temperature should be increased. Introduction of 90% and 95% (vol/vol) hydrous methanol showed a similar trend but a lower thermal conversion efficiency and IMEP value. Therefore, a dual fuel HCCI engine could maintain a high thermal conversion efficiency across a wide load and enhance a 5% larger load compared to a pure n-heptane-fuelled HCCI engine. The hydrocarbon (HC) and carbon monoxide (CO) emissions were lower than 800 ppm and 0.10%, respectively. They were less at higher loads. The nitrogen oxides (NO x ) emissions were below 12 ppm and were found to increase sharply at higher loads to a maximum of 23 ppm.  相似文献   
703.
A hierarchical control structure is a more suitable structural scheme for integrated chassis control. Generally, this type of structure has two main functions. The upper layer manages global control and force allocation, while the bottom layer allocates realized forces with 4 independent local tire controllers. The way to properly allocate these target forces poses a difficult task for the bottom layer. There are two key problems that require attention: obtaining the nonlinear time-varying coefficient of friction between the tire and different road surfaces and accurately tracking the desired forces from the upper layer. This paper mainly focuses on longitudinal tire-road friction allocation and control strategies that are based on the antilock braking system (ABS). Although it is difficult to precisely measure longitudinal tire-road friction forces for frequently changing road surface conditions, they can be estimated with a real-time measurement of brake force and angular acceleration at the wheels. The Magic Formula model is proposed as the reference model, and its key parameters are identified online using a constrained hybrid genetic algorithm to describe the evolution of tire-road friction with respect to the wheel slip. The desired wheel slip, with respect to the reference tire-road friction force from the top layer, is estimated with the inverse quadratic interpolation method. The tire-road friction controller of the extended anti-lock braking system (Ext-ABS) is designed through use of the nonlinear sliding mode control method. Simulation results indicate that acceptable modifications to changes in road surface conditions and adequate stability can be expected from the proposed control strategy.  相似文献   
704.
In this study, a control strategy for a dual mode power split-type hybrid electric vehicle (HEV) is developed based on the powertrain efficiency. To evaluate the transmission characteristics of the dual mode power split transmission (PST), a mechanical loss model of the transmission (TM loss) is constructed. The transmission efficiency, including the TM loss, is evaluated for the dual mode PST. Two control strategies for the dual mode PST are proposed. An optimal operation line (OOL) control strategy is developed to maintain a high engine thermal efficiency by controlling the engine operation point on the OOL. A speed ratio (SR) control strategy is proposed to obtain a greater transmission efficiency by shifting the engine operation point when the dual mode PST operates near the mechanical points. Using the TM loss and the proposed control strategies, a vehicle performance simulation is conducted to evaluate the performance of the two control strategies for dual mode PST. The simulation results demonstrate that, for the SR control strategy, the engine efficiency decreases because the engine operates beyond the OOL. However, the transmission efficiency of the dual mode PST increases because the PST operates near the mechanical point where the PST shows the greatest transmission efficiency. Consequently, the fuel economy of the SR control strategy is improved by 3.8% compared with the OOL control strategy.  相似文献   
705.
It is well known that in-cylinder flow is very important factor for the performance of SI engine. An appropriate in-cylinder flow pattern can enhance the turbulence intensity at spark time, therefore increasing the stability of combustion, reducing emission and improving fuel economy. In this paper, the effect of intake port design on in-cylinder flow is studied. It is found a vortex existed at the upper side of intake port of a production SI engine used in the study, during the intake stroke, which will reduce both tumble ratio and volumetric efficiency. A minor modification on intake port is made to eliminate the vortex and increase tumble ratio while keeping volumetric efficiency at the same level. It is demonstrated that the increase in tumble in the new design results in a 20 per cent increase in the fuel vaporization. In this study, both KIVA and STAR-CD are used to simulate the engine cold flow, as well as ICEM CFD and es-ice used as pre-processor respectively due to the complexity of engine geometry. Simulation results from KIVA and STAR-CD are compared and analyzed.  相似文献   
706.
This study presents the robust design optimization process of suspension system for improving vehicle dynamic performance (ride comfort, handling stability). The proposed design method is so called target cascading method where the design target of the system is cascaded from a vehicle level to a suspension system level. To formalize the proposed method in the view of design process, the design problem structure of suspension system is defined as a (hierarchical) multilevel design optimization, and the design problem for each level is solved using the robust design optimization technique based on a meta-model. Then, In order to verify the proposed design concept, it designed suspension system. For the vehicle level, 44 random variables with 3% of coefficient of variance (COV) were selected and the proposed design process solved the problem by using only 88 exact analyses that included 49 analyses for the initial meta-model and 39 analyses for SAO. For the suspension level, 54 random variables with 10% of COV were selected and the optimal designs solved the problem by using only 168 exact analyses for the front suspension system. Furthermore, 73 random variables with 10% of COV were selected and optimal designs solved the problem by using only 252 exact analyses for the rear suspension system. In order to compare the vehicle dynamic performance between the optimal design model and the initial design model, the ride comfort and the handling stability was analyzed and found to be improved by 16% and by 37%, respectively. This result proves that the suggested design method of suspension system is effective and systematic.  相似文献   
707.
Currently, as well as in the past, researchers have shown great interest in developing suspension systems for vehicles and especially in the design and optimization of the suspension parameters, such as the stiffness and the damping coefficient. These parameters are considered to be important factors that have an influence on safety and improve the comfort of the passengers in the vehicle. This paper describes a simplified methodology to determine, in a quick manner, the suspension parameters for different types of passenger cars equipped with passive suspension systems. Currently, different types of passenger cars are produced with different types of suspension systems. Finding a simplified methodology to determine these parameters with sufficient accuracy would contribute a simplified and quick method to the inspection of the working conditions of a suspension system. Therefore, a simple system to determine these parameters is needed. An analysis of the suspension parameters is performed using mathematical modeling and numerical analysis conducted using the Working Model software. The result derived from the developed methodology shows small errors when compared with the generic values, and it can be concluded that the design of the suspension parameter measurement device using the developed methodology is useful, simple, and has sufficient accuracy.  相似文献   
708.
By considering the effect of the driving cycle on the energy management strategy (EMS), a fuzzy EMS based on driving cycle recognition is proposed to improve the fuel economy of a parallel hybrid electric vehicle. The EMS is composed of driving cycle recognition and a fuzzy torque distribution controller. The current driving cycle is recognized by learning vector quantization in driving cycle recognition. The torque of the engine and the motor is controlled by a fuzzy torque distribution controller based on the required torque of the hybrid powertrain and the battery state of charge. The membership functions and rules of the fuzzy torque distribution controller are optimized simultaneously by using particle swarm optimization. Based on the identification results of driving cycle recognition, the fuzzy torque distribution controller selects the corresponding membership function and rule to control the hybrid powertrain. The simulation research based on ADVISOR demonstrates that this EMS improves fuel economy more effectively than fuzzy EMS without driving cycle recognition.  相似文献   
709.
In order to explore the control method of the intake air state in utility tunnels when the outside fresh air humidity is too high, taking the ventilation works of a utility tunnel section in Pingtan comprehensive experimental area as the research background, this paper proposes the control method of intake air state parameters for ventilation and dehumidification in utility tunnels under normal and accident conditions, by means of the effective ventilation and dehumidification duration prediction model, the evolutionary multi-objective algorithm (EMOA), and in combination with the ventilation control requirements. The results show that the intake air state parameter controller can be adjusted freely according to the different requirements of decision makers for ventilation fan working duration and dehumidifier working temperature and moisture content, and the optimized appropriate control objectives can be achieved, which is conducive to the real-time decision-making of the intake air state parameter control for ventilation and dehumidification in utility tunnels. © 2022, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
710.
Lane and road recognition are essential for self-driving where GPS solution is inaccurate due to the signal block or multipath in an urban environment. Vision based lane or road recognition algorithms have been studied extensively, but they are not robust to changes in weather or illumination due to the characteristic of the sensor. Lidar is a sensor for measuring distance, but it also contains intensity information. The road mark on the road is made to look good with headlight at night by using a special paint with good reflection on the light. With this feature, road marking can be detected with lidar even in the case of changes in illumination due to the rain or shadow. In this paper, we propose equipping autonomous cars with sensor fusion algorithms intended to operate in a different weather conditions. The proposed algorithm was applied to the self-driving car EureCar (KAIST) in order to test its feasibility for real-time use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号