首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   15篇
公路运输   516篇
综合类   29篇
水路运输   238篇
铁路运输   28篇
综合运输   201篇
  2024年   2篇
  2023年   19篇
  2022年   46篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   91篇
  2017年   44篇
  2016年   58篇
  2015年   17篇
  2014年   81篇
  2013年   94篇
  2012年   65篇
  2011年   79篇
  2010年   76篇
  2009年   83篇
  2008年   67篇
  2007年   22篇
  2006年   19篇
  2005年   19篇
  2004年   11篇
  2003年   12篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   11篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1973年   4篇
排序方式: 共有1012条查询结果,搜索用时 31 毫秒
71.
This paper documents a fuzzy-logic-based incident detection algorithm for signalized urban diamond interchanges. The model is capable of detecting lane-blocking incidents whose effects are manifested by patterns of deterioration in traffic conditions that require adjustments in signal control strategies. As a component of a real-time traffic adaptive control system for signalized diamond interchanges, the algorithm feeds an incident report (i.e., the time, location, and severity of the incident) to the system's optimization manager, which uses that information to determine the appropriate signal control strategy.The performance of the model was studied using a simulation of an actual diamond interchange. The simulation study evaluated the model's performance in terms of detection rate, false alarm rate, and mean time to detect. The model's performance was encouraging, and the fuzzy-logic-based approach is considered promising.  相似文献   
72.
High speed and sport utility vehicles with large joint articulation angle demand lower friction in automotive driveshaft joints to meet noise and vibration comfort levels. Thus a more thorough understanding of internal friction characteristics and mechanisms is required. In this paper, a friction model in automotive driveshaft joints was developed through the use of test data from an instrumented Constant Velocity (CV) joint friction apparatus with actual driveshaft assemblies. Experiments were conducted under different realistic operating conditions of oscillatory speeds, CV joint articulation angles, lubrication, and torque. The experimental data was used to develop a physics-based semi-empirical CV joint internal friction model as a function of different CV joint operating parameters. It was found that the proposed friction model captures the experimental results well. Also the friction model estimates the generated axial force (GAF) in tripod CV joints well, which is the main source of force that causes vehicle vibration problems.  相似文献   
73.
An alternator, which converts mechanical rotational energy into electrical energy, is an important component of a vehicle. Alternators operate over a broad range of rotational speeds, typically from 3,000 RPM to 18,000 RPM, which demands a cooling fan producing sufficient airflow, ideally with a minimum of noise. In the current study, an optimized alternator-cooling fan was developed through a linked DOE(Design OF Experiment) process and numerical analysis. The SC/Tetra and FlowNoise S/W programs were used to calculate flow rates and noise levels, respectively, for the newly developed fan. Compared with original model, the numerical results predicted a 3 dBA noise reduction; the measured reduction was 4 dBA.  相似文献   
74.
Variable Nozzle Turbocharger (VNT) was invented to solve the problem of matching an ordinary turbocharger with an engine. VNT can harness exhaust energy more efficiently, enhance intake airflow response and reduce engine emissions, especially during transient operating conditions. The difficulty of VNT control lies in how to regulate the position of the nozzle at different engine working conditions. The control strategy designed in this study is a combination of a closed-loop feedback controller and an open-loop feed-forward controller. The gain-scheduled proportional-integral-derivative (PID) controller was implemented as the feedback controller to overcome the nonlinear characteristic. As it is difficult to tune the parameters of the gain-scheduled PID controller on an engine test bench, system identification was used to identify the plant model properties at different working points for a WP10 diesel engine on the test bench. The PID controller parameters were calculated based on the identified first-order-plus-dead-time (FOPDT) plant model. The joint simulation of the controller and the plant model was performed in Matlab/Simulink. The time-domain and frequency-domain performances of the entire system were evaluated. The designed VNT control system was verified with engine tests. The results indicated that the real boosting pressure traced the target boosting pressure well at different working conditions.  相似文献   
75.
A navigation algorithm is indispensable for Unmanned Ground Vehicles (UGVs). During driving, UGVs follow a global path. In this study, we propose a navigation algorithm using Real Time Kinematic (RTK)-Differential Global Positioning System (DGPS) units and encoders to complement global path planning. Sometimes GPS systems lose their signals and receive inaccurate position data due to many factors, such as edifice and barrier obstructions. This paper shows that GPS deviations can be solved using a Dead Reckoning (DR) navigation method with encoders and that position errors can be decreased through the use of RTK-DGPS units. In addition to this method, we will introduce a new waypoint update algorithm and a steering algorithm using RTK-DGPS units.  相似文献   
76.
This paper presents a modified lateral control method for an autonomous vehicle with both look-ahead and look-down sensing systems. To cope with sensor noise and modeling uncertainty in the lateral control of the vehicle, a modified LMI-based H lateral controller was proposed, which uses the look-ahead information of the lateral offset error measured at the front of vehicle and the look-down information of the vehicle yaw angle error between the reference lane and the centerline of the vehicle. To verify the safety and the performance of the lateral control, a scaled-down vehicle was developed, and the positioning of the vehicle was estimated with USAT. The proposed controller, which uses both look-ahead and look-down information, was tested for lane changing and reference lane tracking with both simulation and experiment. The simulation and experimental results show that the proposed controller has better tracking and handling performance compared with a controller that uses only the look-ahead information of the target heading angle error.  相似文献   
77.
Because the FlexRay protocol has more than 70 configuration parameters and these parameters correlate with each other, designing a FlexRay network is a complex and difficult task. In this study, we propose a design framework that optimizes the two main FlexRay network parameters that are highly relevant to the application algorithm. The design process is composed of two steps for optimizing parameters. In the first step, the static slot length is optimized using a frame-packing algorithm. This algorithm binds network signals into static frames based on their periods and signal groups. In the second step, the communication cycle length is optimally designed with frame-scheduling algorithm and worst-case reponse time analysis. Based on the frame-scheduling algorithm, the response times are analyzed. The proposed design framework was applied to a unified chassis control system as a case study, and the analytical results were verified.  相似文献   
78.
Identifying the components of a vehicle’s interior noise is important in many phases of the noise, vibration, and harshness (NVH) development process. Many test methods that have been widely used in the automobile industry to separate noise sources are based on system identification methods in the frequency domain. However, none of the frequency response function-based methods can directly estimate the wind noise component. In this article, an analytical model for the interior noise level based on a simple power law was developed. It was assumed that the mean squared acoustic pressure for the interior noise could be obtained by summing up those of the wind noise, road noise, and background noise. The wind noise and road noise were further assumed to depend only on wind speed and the vehicle’s driving speed, respectively, and to follow a simple power law. The resulting analytical model includes five parameters that can be optimized for the vehicle and the road. The validity of the model was verified by using data obtained from cruise tests performed on a proving ground for cruise speeds ranging from 40 km/h to 130 km/h. The model is applied to the overall and 1/3-octave bands of interior noise and is shown to describe the data trends fairly well. For the test vehicle used in the present work, the overall mean squared pressures for the wind and road noise components are shown to be proportional to the wind speed to the 5.8 power and to the driving speed to the 3.4 power, respectively.  相似文献   
79.
The development of an inner-piston-chamber temperature measurement system is a necessary step in engine development or when solving other fundamental problems related to automotive engines. There are various pre-existing measurement methods available, e.g., the linkage method, piston telemetry, templog, and the electromagnetic induction method. In this study, we first redesigned the coil sensor used in the electromagnetic induction method using PEEK and then used Taguchi methods to reduce the number of experiments in the development process and finally utilized piston telemetry via Bluetooth to verify the precision and accuracy of the redesigned PEEK coil sensor and electromagnetic induction method. The results displayed a reproducibility within 0.5 degrees and an accuracy within 2 degrees Celsius.  相似文献   
80.
The purpose of this study was to effectively identify parameters for a LuGre friction model based on experimental measures. In earlier work related to this study (Yang et al., 2009), which was based on the characters of polygonal wear (Sueoka and Ryu, 1997), we showed a frictional vibration model for a mass on a moving belt. This model reflected lateral vibrations caused by velocity and toe-in angle. An important aspect of the present study is the improved friction model. A previous friction model, which divided the process into four parts, expressed the sable excited vibration well but failed to reflect the hysteresis loop change when vehicles accelerated or decelerated continuously. A LuGre friction model can solve this problem, but several model parameters must be obtained experimentally. We measured contact width and length of tires as vertical pressure changed; this provided a theoretical basis for apparent stiffness of a unit of tire tread. Based on tire data from Bakker E’s article in a SAE paper from 1987, we identified the Stribeck exponent and Stribeck velocity in LuGre. Then, the results were implemented in a vibration system that verified the rationality of the data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号