首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   14篇
公路运输   638篇
综合类   25篇
水路运输   251篇
铁路运输   29篇
综合运输   294篇
  2024年   2篇
  2023年   19篇
  2022年   46篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   99篇
  2017年   72篇
  2016年   156篇
  2015年   11篇
  2014年   59篇
  2013年   46篇
  2012年   84篇
  2011年   163篇
  2010年   152篇
  2009年   64篇
  2008年   100篇
  2007年   52篇
  2006年   11篇
  2005年   12篇
  2004年   15篇
  2003年   10篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1237条查询结果,搜索用时 15 毫秒
151.
The most important factor in gas strut design is determining an optimized layout. If the layout is not optimized, vehicle operators will have a suboptimal experience when opening and closing the tailgate. A poor layout of the gas struts causes operators to work excessively when they open/close the tailgate, and vehicle owners will incur additional expenses due to deterioration in the body quality of the vehicle. Thus, an optimized gas strut layout is very important, even if it does not seem interesting. This paper describes the tailgate operation process and focuses on determining an optimized gas strut layout for opening/closing the tailgate easily.  相似文献   
152.
Fuel cell hybrid vehicles (FCHVs) have become one of the most promising candidates for future transportation due to current energy supply problem and environmental problem. Fuel economy is an important factor in FCHVs. In order to properly evaluate the fuel economy of an FCHV, the initial battery state of charge (SOC) and the final battery SOC have to be identical so that the effect of the battery energy usage on the fuel economy is neglected. In the simulation or in the real driving, however, the final battery SOC is usually different from the initial battery SOC, and the final battery SOC often depends on the power management strategy. To consider the difference between the two battery SOC values, the concept of equivalent fuel consumption is presented by two methods. One is based on the relationship between delta SOC and delta fuel consumption, and the other is based on the optimal control theory. Two rule-based power management strategies for an FCHV are presented, and for each strategy, the fuel economy is evaluated based on the two methods. The characteristics of the two methods are discussed and compared, and the superior one is selected based on the comparison.  相似文献   
153.
A novel regulation system for a vehicle generator and lead-acid battery is proposed in this paper. By integrating the regulation method, the output voltage of the generator is determined and controlled by the algorithm to save electrical energy and protect the lead-acid battery. The regulation algorithm is implemented in Matlab/Simulink, and the logic function of the system is verified using the dSPACE/AutoBox workbench. The experimental results show that the new algorithm improves the performance of the fuel economy of the vehicle and the battery state-of-health compared to the traditional control method.  相似文献   
154.
This study compares the optimum designs of center pillar assembly with advanced high-strength steel (AHSS) to that of conventional steel for crashworthiness and weight reduction in side impacts. A simplified side impact analysis method was used to simulate the crash behavior of the center pillar assembly with efficient computing time. Thickness optimization aims to perform an S-shaped deformation of the center pillar toward the cabin to reduce the injury level of a driver in a crash test. Center pillar members were regarded as an assembly of parts that are fabricated with tailor-welded blanks, and the thickness of each part was selected as a design variable. The thickness variables of parts that have significant effects on the deformation mechanism were extracted as the main design variables for thickness optimization based on the results of a sensitivity analysis with design of experiments. The optimization condition was constructed to induce an S-shaped deformation mode and reduce the weight of the center pillar assembly. An optimum design was obtained after several iterations with response surface methodology (RSM). Optimization was first performed with conventional steel and then with AHSS with the same procedure to optimize the crashworthiness of the center pillar assembly. After thickness optimization, optimum designs were applied to the full vehicle analysis to evaluate the validity of the optimization scheme with the simplified side impact analysis method. Then, the crashworthiness of optimum designs with conventional steel and AHSS were compared using the full vehicle analysis. This comparison demonstrates that AHSS can be more effectively utilized than conventional steel to obtain a lightweight design of an auto-body with enhanced crashworthiness.  相似文献   
155.
The warm shrink fitting process is generally used to assemble automobile transmission parts (shafts/gears). However, this process causes a deformation in the addendum and dedendum of the gear depending on the fitting interference and gear profile, and this deformation causes additional noise and vibration between the gears. To address these problems, the warm shrink fitting process is analyzed by considering the error in the dimensional deformation of the addendum and dedendum found when comparing the results of a theoretical analysis and finite element analysis (FEA). A correction coefficient that reduces this error is derived through an analysis of the difference in the cross-sectional area between the shapes used for the theoretical analysis and that of the actual gear, and a closed-form equation to predict the dimensional deformation of the addendum and dedendum is proposed. The FEA method is proposed to analyze the thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process). To verify the closed-form equation using the correction coefficient, measurements are made of actual helical gears used in automobile transmissions. The results are in good agreement with those given by the closed-form equation.  相似文献   
156.
157.
In order to achieve safe navigation, it is important to be able to understand and calculate the effects of an external force on the maneuvering behavior of a ship. This paper analyzes the course stability and yaw motion of a ship traveling under steady wind conditions. A course stability criterion and approximate formulae for the yaw motion in steady wind, including the aero/hydrodynamic force derivatives for the ship, are derived. To confirm the reliability of the criterion and formulae, they were used to investigate a pure car carrier in steady wind. The results of this investigation revealed that course instability appears in the head and following wind directions, mainly under the influence of aerodynamic derivatives with respect to the yaw restoring forces. However, this course instability can be reduced by applying steering control. For winds ranging from head winds to beam winds, yaw oscillation appears when the period is relatively long and the damping is small. The analytical formulae derived here can be used to gain a better understanding of ship maneuvering behavior in steady wind.  相似文献   
158.
[目的]针对“适配于螺旋桨的船尾线型+泵喷推进器”构成的船舶泵喷推进系统,提出一种基于统计学习的实船快速性预报新方法。[方法]以某大型水面船舶泵喷推进系统为对象,通过神经网络学习典型推进泵的推力系数图谱曲线,综合运用船-桨配合时的K_(T)-J曲线和船体-喷泵配合时的推力特性曲线,建立“仅需船舶阻力曲线就能实现船舶泵喷推进系统实船快速性预报”的新方法,并基于船模阻力试验、泵喷模型敞水试验及船体-泵喷自航试验的测量换算结果对实船推进性能的预报结果开展精度校验。[结果]校验结果表明:在航速18~30 kn范围内,船舶泵喷推进系统的自航转速、推力和功率的预报误差可控制在5.4%以内,其中设计航速附近的误差甚至小于2%;船体-泵喷的相互作用程度介于船-桨与船体-喷泵之间且幅值相对较小,推力减额系数为趋向于0的极小值,故船舶泵喷推进系统是介于桨轴推进系统和喷水推进系统之间的产物。[结论]该预报方法有利于提升船舶泵喷推进系统实船快速性预报的能力,可为新型舰艇泵类推进系统总体设计/研究提供参考。  相似文献   
159.
ABSTRACT

Based on an analysis of 253 related papers drawn from the Web of Science database, this study examines holistic sustainability research in liner shipping management literature using a citation network analysis (CNA) approach followed by a qualitative analysis of findings. We identify four major research domains, namely shipping performance, port selection and management, shipping markets, and environment, as well as related sub-domains of shipping performance. We discuss the current research trends and focal issues in these domains with a focus on their implications for policy development. Our results indicate that while the sustainability discourse in the literature has developed and matured significantly over the last decade, generating valuable insights for practitioners and regulators alike, it still struggles with blurry terminology and a lack of holistic frameworks jointly addressing the different aspects of sustainability: Economic considerations of liner shipping are still the main concern, while environmental and social issues are less regarded in the academic discourse. Furthermore, we identify a dearth of studies rooted in managerial or economic theory. In this regard, our study provides insights on the scope of the holistic sustainability discourse in liner shipping management, its contributions to theory and practice, and its implications for the further development of policies addressing sustainability in liner shipping management. We advocate further construct development for sustainability in liner shipping, as well as empirical tests of the antecedents of sustainability practice adoption in the industry for future research.  相似文献   
160.
[目的]船舶系统由多设备的复杂机构组成,各组件参数具有动态性和非线性的特点,所以故障诊断过程复杂。为提高诊断效率,提出一种动态特征融合方法。[方法]利用分形理论、动态理论及核主元分析(KPCA)法对系统状态数据进行重构、映射及筛选,得到主元特征数据矩阵,求得平方预测误差(SPE)及相应的控制限,构建出基于船舶柴油机进排气系统健康数据的离线监测模型,利用该模型对系统进行故障诊断分析。为验证模型的有效性,选取某船舶柴油机进排气系统的故障数据进行验证分析。[结果]结果表明,动态特征融合分析方法可有效实现对系统动态非线性状态数据的精确分析,实现对系统故障的高效分析和诊断。与KPCA及支持向量机(SVM)方法相比,所提方法具有更好的故障诊断性能。[结论]该方法可实现船舶柴油机进排气系统故障的检测和诊断,提升系统运行的可靠性和安全性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号