首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   825篇
  免费   10篇
公路运输   388篇
综合类   28篇
水路运输   197篇
铁路运输   30篇
综合运输   192篇
  2025年   2篇
  2024年   3篇
  2023年   19篇
  2022年   46篇
  2021年   12篇
  2020年   8篇
  2019年   7篇
  2018年   68篇
  2017年   13篇
  2016年   42篇
  2015年   14篇
  2014年   65篇
  2013年   78篇
  2012年   48篇
  2011年   60篇
  2010年   63篇
  2009年   56篇
  2008年   56篇
  2007年   20篇
  2006年   14篇
  2005年   18篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   6篇
  1999年   12篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有835条查询结果,搜索用时 15 毫秒
31.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   
32.
The demand for NOx after-treatment system has increased dramatically due to the stricter NOx emission regulations for diesel vehicles. The urea-SCR system is one of the NOx after-treatment methods found to be quite effective to meet the regulation requirement enforced by various authorities including the Euro-6. In order to develop an effective urea-SCR system, it is critical to establish an even distribution of reductant over the catalyst surface since this favorable distribution can increase reduction reaction and in turn, improve NOx conversion efficiencies. In the current study, a number of design variations of the urea-SCR system which included two mixer types and three decomposition pipe lengths, were evaluated systematically using CFD analysis and experimental measurements. The purpose of the CFD analysis was to estimate the distribution of reductant within the urea-SCR system with a specific configuration and the purpose of the engine emission test was to measure the amount of NOx reduction, respectively. The results from the systematic analysis revealed the relation between the reductant distribution over the SCR and the performance of the NOx reduction.  相似文献   
33.
This paper presents a method to assess of fatigue strength for resistance spot welded joints, which incorporates welding residual stress effects. To achieve this, first, a non-linear finite element analysis (FEA) was performed to simulate the spot-welding process. To validate the FEA results, the numerically calculated welding residual stresses of spot welds were then compared with experimental results measured by X-ray diffraction method. The residual stress distributions showed good agreement between calculations and experiments. To evaluate the effects of welding residual stress on the fatigue design criterion of resistance spot welded joints subjected to cross-tension load, the stress amplitude (σa-res) taking into account welding residual stress at a spot weld was proposed based on a modified Goodman equation incorporating the residual stress effect. Using the stress amplitude σa-res at the nugget edge of a spot weld, the ΔP ? Nf relations obtained as the fatigue test results for spot welded joints were systematically rearranged to the σa-res ? Nf relation. It was found that the proposed stress amplitude (σa-res) provides more reasonable and accurate fatigue design criterion of spot welded joints subjected to cross-tension load.  相似文献   
34.
In this study, a vehicle velocity estimation algorithm for an in-wheel electric vehicle is proposed. This algorithm estimates the vehicle velocity using the concept of effective inertia, which is based on the motor torque, the angular velocity of each wheel and vehicle acceleration. Effective inertia is a virtual mass that changes according to the state of a vehicle, such as acceleration, deceleration, turning or driving on a low friction road. The performance of the proposed vehicle velocity estimation algorithm was verified in various conditions that included straight driving, circle driving and low friction road driving using the in-wheel electric vehicle that was equipped with an in-wheel system in each of its rear wheels.  相似文献   
35.
The research is carried out to improve passenger’s comfort to increase the vehicles stability in dynamic conditions. The literature available in the automotive engineering considers different topics for studying suspensions. An example represents mechanisms structure and analysis (synthesis, kinematics, and dynamics) under various operating conditions. These aspects have been approached before analytically, numerical. The current paper studies the influence of the lateral force on the contact patch of the wheel and the corresponding variations of vehicle stability parameters, such as camber angle and wheel rear track. The study is performed for a newer innovative rear suspensions mechanism which does not have a wheel track and camber angle variation, relative to the chassis, when the suspension components was considered rigid. A numerical solution is obtained through a virtual model on several commercial codes: MSC Adams, Patran, Nastran. Concerning the analysed parametes, their variation increases as the applied force is increased. Moreover, the largest variation corresponds to the case were elastic bushings and deformable links are considered.  相似文献   
36.
The method of numerical multi-body simulation is an often used and well-understood development tool in the automotive industry. In order to reproduce the ride comfort or handling behaviour of vehicles, mathematical models have to be built up. To achieve accurate simulation results, highly detailed component models are required. However, the formulation of appropriate physically-based model equations of complex automotive components (e.g. air springs, shock absorbers, rubber bearings, tyres, etc.) can be very difficult. To handle this, empirical modelling methods have been developed. Simple algebraic equations are used to describe complex system behaviour. This simplification is very effective, although it largely ignores the natural laws of mechanics and thermodynamics but is still capable to predict the component response. This article illustrates how to take advantage of this approach in numerical simulations. We describe the development of a hybrid automotive shock absorber model based on both spline and neural network (NN) approaches. By combining these different approaches, an accurate model is achieved without loss of variability. Non-isothermal laboratory force-displacement measurements of an automotive shock absorber are being used to estimate the parameters of the NN. As shown, the model replicates the measured data with sufficient accuracy, especially the hysteresis. Finally, we present a set of quarter-car simulations with a built-in hybrid NN shock absorber.  相似文献   
37.
A nonlinear wagon-track model on curved track has been developed to characterize rail corrugation formation due to self-excitation of the wheel-rail stick-slip process. In this model, wagon movements were described using up to 78 degrees of freedom (DOFs) to model a three-piece freight bogie. Innovatively, the wheelset movements are described using nine DOFs, including torsional and bending modes about the longitudinal and vertical directions. The track modelling is considered as a one-layer structure (two rail beams on discrete spring and damper elements). The wheel sliding after creepage saturation is considered in the wheel-rail interface modelling. Simulation of a case study shows that the frequencies of the wheel stick-slip process are composed of the basic frequency, which might come from the combined effect of sleeper-passing frequency and one-third of the combined torsional and bending frequency of the wheelset, and the double and triple basic frequencies, which form the wavelengths of rail corrugation at different situations.  相似文献   
38.
This paper proposes a new neuron control strategy for an active vehicle suspension system, with the emphasis on the study of multivariable and uncertain suspension characteristics. The novelty of this strategy is in the use of integrated error, which consists of multiple output errors in the regulated plant. By combining the integrated error approach with the traditional neuron control (TNC), integrated error neuron control (IENC) is presented. It provides a direct control to the multiple outputs of the control plant simultaneously. Taking a quarter-car model as an example, the proposed control strategy is applied and comparative simulations are carried out with various vehicle parameters and road input conditions. Simulation results prove the effectiveness and robustness of the proposed IENC method. In addition, the newly proposed neuron scheme provides a simple yet efficient new possibility for the control of a class of uncertain multivariable systems similar to an active vehicle suspension.  相似文献   
39.
This article presents a two-stage turbocharged heavy-duty diesel (HDD) engine designed to fulfil the US2007 anti-pollution directive. This directive imposes very restrictive limits on the NOx and particle emissions of HDD engines. In this work, the possibility of combining particle traps in the exhaust line to reduce soot emissions with very high EGR rates to reduce NOx emissions is considered. This new generation engine implements two-stage turbocharging in order to improve the bsfc when the engine is working on steady conditions as well as to optimize the engine transient response. After carrying out the tests, the results were analyzed and the engine settings were adjusted to maximise its behaviour and minimise pollutant emissions. NOx and soot emission peaks were also analyzed at engine transient conditions in order to keep them under certain levels, and thus maintain the overall pollutant emissions to a level that is as low as possible. In summary, a double-stage turbocharging configuration can greatly improve engine driveability (between 23% and 36% depending on engine speed), while reducing NOx emissions during transient evolution without increasing opacity peaks beyond the stated limits.  相似文献   
40.
This paper proposes a steering control method based on optimal control theory to improve the maneuverability of a six-wheeled vehicle during cornering. The six-wheeled vehicle is believed to have better performance than a four-wheeled vehicle in terms of its capability for crossing obstacles, off-road maneuvering and fail-safe handling when one or two of the tires are punctured. Although many methods to improve the four-wheeled vehicle’s lateral stability have been studied and developed, there have only been a few studies on the six-wheeled vehicle’s lateral stability. Some studies of the six-wheeled vehicle have been reported recently, but they are related to the desired yaw rate of a four-wheeled vehicle to control the six-wheeled vehicle’s maneuvering during corning. In this paper, the sideslip angle and yaw rate are controlled to improve the maneuverability during cornering by independent control of the steering angles of the six wheels. The desired yaw rate that is suitable for a six-wheeled vehicle is proposed as a control target. In addition, a scaled-down vehicle with six drive motors and six steering motors that can be controlled independently is designed. The performance of the proposed control methods is verified using a full model vehicle simulation and scaled-down vehicle experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号