排序方式: 共有1条查询结果,搜索用时 3 毫秒
1
1.
在车辆悬架故障诊断过程中,深度学习故障诊断模型在面对少量样本数据时模型训练效果不佳,导致诊断模型的接收者操作特性曲线(receiver operating characteristic, ROC)的曲线下面积(area under curve, AUC)较小的问题,利用经验模态分解(empirical mode decomposition, EMD)方法,对采集的车辆悬架高频振动信号进行分解处理,根据每个经验模态分量(intrinsic mode functions, IMF)的能量,提取高频异常振动故障特征,构建了基于深度迁移学习的诊断模型;以深度卷积神经网络算法为基础,对小样本特征矢量信息进行故障知识迁移处理,通过参数微调更新权值,优化故障诊断模型。实验结果表明:优化后模型的AUC值为0.89,模型故障诊断结果具有较高准确性。 相似文献
1