排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Cm·Pn图的邻强边色数 总被引:1,自引:0,他引:1
设m(m≥3)个边不相交的路vi1vi2,vi2vi3,…,vi(n-1)vin(I=1,2,…,m),连m(m≥3)圈v11,v21,v31,…,vm1后所得的简单图称Cm与Pn的联图,记为Cm·Pn.本文证明了Cm·Pn图的邻点可区别的边色数为4. 相似文献
2.
设m≥3,n≥2V(Cm.Sn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm.Sn)={u1u2,u2u3,…,u(m-1)um,umu1}∪{uivij|i=1,2,…,m;j=1,2,…,n}则称Cm.Sn为m个Sn(星)的心联图.V(CmΔSn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(CmΔSn)={v11v21,v21v31,…,v(m-1)1vm1,vm1v11}∪{uivij|i=1,2,…,m;j=1,2,…,n}则称CmΔSn为m个Sn(星)的沿联图.本文给出Cm·Sn和CmΔSn全染色以及全色数. 相似文献
3.
设m≥3,n≥2V(Cm·Sn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Sn)={u1u2,u2u3,…,u(m-1)um,umu1}∪{uivij|i=1,2,…,m;j=1,2,…,n} 则称Cm·Sn为m个Sn(星)的心联图.V(CmΔSn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(CmΔSn)={v11v21,v21v31,…,v(m-1)1vm1,vm1v11}∪{uivij|i=1,2,…,m;j=1,2,…,n} 则称CmΔSn为m个Sn(星)的沿联图.本文给出Cm·Sn和CmΔSn全染色以及全色数. 相似文献
4.
Cm·Fn的邻点可区别边色数 总被引:3,自引:2,他引:1
Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Gm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Gm·Fn)=E(Cm)∪{uivij |i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n-1}.研究Gm·Fn的邻点可区别的边色数. 相似文献
1