首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
公路运输   3篇
综合类   15篇
水路运输   1篇
铁路运输   50篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2016年   1篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
41.
针对我国重载铁路轨下垫板易与轨枕承轨槽发生磨损的问题,利用ABAQUS有限元仿真平台,基于Ar-chard模型,通过子程序UMESHMOTION实现界面磨损的表面节点动态更新.建立轨下弹性垫板与轨枕承轨槽的动态磨损分析模型,对比分析不同外形的轨下弹性垫板在硬度和杨氏模量变化时轨枕承轨槽界面的磨损规律.研究表明:(1)潜...  相似文献   
42.
高速列车轮对因定位不准会导致不同程度的初始安装偏差,在通过道岔等薄弱环节时轮轨关系急剧恶化,影响行车安全.?为研究车辆在初始安装偏角状态下通过高速道岔的动力学性能,以18号道岔为研究对象建立了具有初始偏转角的车辆-道岔耦合动力学模型,对前轮对偏转、后轮对偏转、前/后轮对同向偏转、前/后轮对反向偏转4种工况进行仿真,结合...  相似文献   
43.
合理的线路纵断面是高速列车安全平稳通行的必要条件。超大跨度铁路桥梁成桥线形较设计线形易出现较大偏差,由于线路调整能力有限,桥上线路纵断面难以达到设计高程,故需在成桥线形基础上变更线路纵断面设计。在满足道床厚度要求的前提下,变更后的纵断面线形难以满足线路设计规范要求,严重影响了工程验收及列车达速运营。为此,以实测桥梁线形为基准,充分考虑道床厚度及线路衔接,依据傅里叶级数原理建立线路线形频域特征与车体加速度的关联关系,进而构建纵断面目标优化模型,提出一种适用于超大跨度铁路桥上线路纵断面的优化方法。以某超大跨度悬索桥为例,研究结果表明:该方法可使线路纵断面的最小波长远离车体加速度敏感波长,降低车体振动加速度;优化后的线路纵断面车体加速度响应最大值为0.15 m/s2,优于工程实际中所采用的多坡段纵断面;优化后的线路纵断面具有良好的平顺性及适应性。本方法可直观反映优化后线路纵断面的频域特性,并从波长的角度实现了纵断面优化与高速列车行车性能的关联,可用于指导桥上线路纵断面设计及优化。  相似文献   
44.
路基上CRTSⅡ型板式轨道裂纹影响分析   总被引:3,自引:0,他引:3  
为分析路基上CRTSⅡ型板式无砟轨道轨道板开裂对车辆和无砟轨道结构的影响,根据弹性地基梁理论、有限元方法和轮轨系统耦合动力学理论,建立了弹性地基梁体的有限元模型和车辆-轨道-路基垂向耦合振动模型.采用大型有限元软件ANSYS/LS-DYNA,分析了轨道板开裂对轨道结构的静、动力学性能和行车性能的影响.分析结果表明:轨道板开裂对轨道结构受力的影响较小,不影响行车的平稳性和安全性;随列车速度增大和轨道板开裂,均会增大轮轨作用力和轨道结构的动力响应;在裂缝地段,应采取减振、隔振、控制轨道几何不平顺等措施降低轨道结构的动力响应;轨道板开裂将影响无砟轨道的耐久性和使用寿命,应及时修补.   相似文献   
45.
为确定合理的岔桥相对位置,建立了列车-道岔-桥梁耦合系统的振动分析模型,用数值模拟法,分析了350 km/h、18号渡线道岔布置于6×32 m的连续梁上,岔桥相对位置对列车、道岔及桥梁的各项动力特性的影响.结果表明:岔桥相对位置对最大动轮载、轮缘力、尖轨及心轨开口量、车体运行平稳性的影响不显著,对最大减载率、脱轨系数、钢轨动应力及桥梁振动加速度的影响较大;最优的岔桥相对位置是道岔辙叉部分布置在列车运行方向上距离第3跨桥墩1/8~1/4跨范围内.  相似文献   
46.
因车体坐标系统和手机坐标系统存在角度偏差,为使手机检测数据真实反映车体振动加速度,提出针对手机姿态误差的系统性矫正方法. 该方法以重力方向为基准矫正手机垂向加速度,借助车体横、纵向加速度的正交性矫正手机水平向加速度,并基于极大似然估计原理评估角度偏差,保证手机姿态矫正的可靠性. 结合现场测试结果表明:两部智能手机检测数据经姿态误差矫正得到以重力方向为基准的垂向角度修正值分别为0.008° 和0.007°,两者水平夹角为29.75°,与试验放置夹角30.00° 偏差0.25°;智能手机与高精度传感器检测的车体加速度在时域和频域的幅值、主频均一致.   相似文献   
47.
高速道岔因其自身固有的结构不平顺,在轮载过渡时存在剧烈的轮轨动力冲击作用。随着高速列车运行速度的提升,动态轮轨冲击效应进一步加剧。目前,最高时速350 km的高速道岔结构体系已形成,随着时速400 km以上高速铁路的建设,亟需开展既有高速道岔的适应性研究。在评估18号道岔对时速400 km高速列车的适应性基础上,从轮轨关系、无缝化设计等方面,对时速400 km高速道岔的结构设计关键技术进行探讨,提出在设计时速400 km高速道岔时,可通过合理设置心轨降低值、抬高翼轨、优化基本轨廓形等技术,改善轮轨相互作用;通过转辙器跟端限位器优化、采用新型钩型锁闭机构,进一步实现高速道岔无缝化,满足跨区间无缝线路要求,优化了行车条件,保障了线路平顺性,可为相关高速道岔设计提供参考。  相似文献   
48.
底座纵连无砟轨道桥上无缝道岔中轨道板类型有不同种类,其中轨道板纵连结构虽然能较好地传递纵向力,为无缝道岔提供稳定可靠的无砟轨道基础,但是由于在道岔区内轨道板的宽度是渐变的,在轨道板之间纵向连接时,较难保证所施加预应力的对称性,因而还可采用分块式轨道板结构.本文就分块式道岔板与纵连式轨道板在受到伸缩力和制动力作用的情况下对桥岔不同部位的影响进行比较,进而得出:在底座纵连无砟轨道桥上无缝道岔中,纵连式轨道板结构要优于分块式道岔板结构.  相似文献   
49.
研究目的:针对我国地铁线路钢轨因施工误差导致的非对称轨底坡处易出现疲劳伤损现象,利用我国地铁车辆常用的LM型面与CHN60钢轨,基于轮轨接触几何关系和Kalker三维非赫兹弹性体滚动接触理论及其数值程序CONTACT,分析非对称轨底坡对轮轨接触几何参数和轮轨接触力学特性的影响,揭示引起轮轨滚动接触疲劳的原因。研究结论:(1)随着轨底坡的减小,轮轨接触点对分布趋向于轨距角一侧,接触点对分布范围变窄,且轮轨接触斑面积减小,滑动区增大;(2)横移量小于4 mm时,右轨侧1/30、1/40、1/50三种轨底坡下的最大法向接触应力相差不大,但均明显高于轨底坡为1/20的值;在5~8 mm横移量范围内时,相同横移量下轮轨接触应力随着轨底坡的减小而增大;(3)同一横移量下轮轨体内最大等效应力值随着轨底坡的减小而增大,右轨侧轨底坡从1/20减小至1/50时最大等效应力均增加了60%左右,且等效应力沿纵向分布范围变窄,沿深度方向影响范围变小,等效应力作用趋于集中;(4)轨底坡的减小引起轮轨表层接触应力增大及轮轨体内等效应力增加,可能引起轮轨材料从表层到深度领域内的疲劳破坏,缩短轮轨的使用寿命;(5)本研究成果可为我国地铁线路检测、维修及轨底坡设置等提供参考。  相似文献   
50.
研究目的:为研究地铁曲线尖轨道岔的不可逾越速度,本文以地铁9号曲线尖轨道岔为例,基于轮轨接触几何算法和车辆-道岔系统耦合动力学仿真计算,在综合考虑车辆侧向过岔时的安全性及平稳性的基础上确定曲线尖轨道岔的不可逾越速度,以期为列车折返能力的提高和城际轨道交通道岔的设计提供技术支持与储备。研究结论:(1)在尖轨顶宽40 mm时标准LM车轮型面与轨道接触点分布已经过渡到尖轨上,而磨耗状态LM车轮型面与钢轨的接触点分布可能在基本轨上或者尖轨上,轮载过渡位置延后;(2)车辆过岔时主要以车体横向加速度为控制指标确定不可逾越速度,因此在地铁车辆运行过程中可对车辆横向加速度进行实时监测,作为车辆运行安全性和平稳性的监测指标;(3)标准LM车轮型面时地铁9号曲线尖轨道岔的不可逾越速度为50 km/h,磨耗状态LM车轮型面时9号曲线尖轨道岔的不可逾越速度为45 km/h;(4)通过提高地铁车辆ATP顶篷速度来提高ATO速度,可缩短发车时间间隔,提高列车运行速度和对运量的储备;(5)通过对地铁曲线尖轨道岔不可逾越速度的分析,可对地铁车辆运行安全性和平稳性进行监测,并针对列车行车间隔加密后可能引起折返能力不足的问题,为道岔提速研发提供理论支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号