首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   16篇
公路运输   556篇
综合类   44篇
水路运输   305篇
铁路运输   25篇
综合运输   309篇
  2023年   9篇
  2022年   20篇
  2021年   9篇
  2020年   4篇
  2019年   11篇
  2018年   31篇
  2017年   38篇
  2016年   78篇
  2015年   17篇
  2014年   66篇
  2013年   189篇
  2012年   66篇
  2011年   78篇
  2010年   73篇
  2009年   57篇
  2008年   77篇
  2007年   33篇
  2006年   29篇
  2005年   24篇
  2004年   20篇
  2003年   10篇
  2002年   13篇
  2001年   17篇
  2000年   29篇
  1999年   15篇
  1998年   13篇
  1997年   17篇
  1996年   22篇
  1995年   24篇
  1994年   9篇
  1993年   16篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1239条查询结果,搜索用时 31 毫秒
941.
The debate over electric vehicles (EVs) pivots largely on issues of market demand: will consumers purchase a vehicle that provides substantially less driving range, yet can be refueled at home, than an otherwise comparable gasoline vehicle? Also, what role do other unique attributes of EVs play in the purchase decision? Most previous studies find that limited driving range is a serious market barrier; many of those same studies ignore or under-value other novel attributes. To probe these future consumer decision processes deeply and robustly, we first devised and conducted detailed, interactive and experiment-oriented interviews. Then, incorporating what we learned, we designed an innovative mail survey and administered it to 454 multi-car households in California. The four-stage mail survey included a video of EV use and recharging and other informational material, completion of a 3-day trip diary and map of activity locations, and vehicle choice experiments. In addition to propulsion systems, respondents made choices of body styles, driving ranges, and other features. We formalized and tested what we call the hybrid household hypothesis: households who choose EVs will be purposefully diversifying their vehicle holdings to achieve the unique advantages of different propulsion systems. The hypothesis is supported, given the assumptions in our experimental design. In fact, a significantly larger number of EVs are chosen than the minimum number that would support our hypothesis. We find that purchases of battery-powered EVs by hybrid households would account for between 7 and 18% of annual light duty vehicle sales in California. EVs sold to fleets and other households would be in addition to those identified by this study.  相似文献   
942.
Non-esterified bio-diesel fuel is more economically feasible than esterified one because of simple manufacturing process that only consists of filtering. Applicability of this fuel on diesel engine with electronic control system was tried and accomplished in a previous research. In this study, optimization adopting a fractional factorial design and response surface methodology was carried out at 25 % and 50 % of engine load in order to verify effectiveness of design of experiment for performance optimization of diesel engine. Pcr and IT mainly affected responses as specific fuel oil consumption and nitrogen oxides regardless of engine load according to the fractional factorial design. Estimations were 310.3 g/kWh of specific fuel oil consumption and 237 ppm of nitrogen oxides at 25 % load, and 233.2 g/kWh of specific fuel oil consumption and 730 ppm of nitrogen oxides at 50 % load according to the response surface methodology. As the results of verification tests, specific fuel oil consumption and NOx were respectively 300.4 g/kWh and 277 ppm at 25 % load, and 236.8 g/kWh and 573 ppm at 50 % load. Since there were small differences between estimations and verifications, adopting Box-Behnken method of the response surface methodology for performance optimization of diesel engine should be considered carefully.  相似文献   
943.
Some vehicle components are developed by setting target weights to the gram level at their design stages to accomplish a lightweight design. Recently, there have been many studies that have focused on lightweight design through the use of ultra-high-strength steels. However, a lightweight design can face many challenges if the reliability of the analysis is not also secured at the design stage. Such challenges include difficulties in coupled analyses when the file formats are different among PAM-STAMP, ABAQUS, and NASTRAN. In this study, we developed a mapping interface that enables mapping between the file formats of various software programs. Buckling analysis was coupled to the forming analysis, in which pre-strain test data were applied in considering the material’s strain hardening, to evaluate the rigidity of the front lower control arm that controls the wheels and transfers loads. The influence of forming effects on endurance was evaluated, and residual stresses around the weld zone were calculated. A comparison of experimental and analytical results indicated that the proposed analysis was highly reliable.  相似文献   
944.
Sensor technologies have been innovated and enhanced rapidly for highly automated vehicle and advanced driver assistance systems (ADAS) in automotive industry; however, in order to adopt sensors into mass production vehicle in near future, various requirements should be satisfied such as cost, durability, and maintainance without any loss of overall performance of the sensors. In this sense, a 3D flash lidar is one of primising range sensors because of no moving parts, compact package, and precise measure for distance by using a laser. In spite of the several advantages, the 3D flash lidar is not commonly used in automotive industry because it is quite expensive for adoption and it is manufactured with only general purpose currently; therefore, the cost reduction and optimal design to satisfy various purposes of ADAS or autonomous driving should be accomplished. In this paper, we propose a novel approach for design factor optimization of the 3D flash lidar based on a geometrical model by using structural similarity between the 3D flash lidar and 2D digital camera. In particular, focal length and area of a receiver (focal plane array and read-out integrated circuit) which directly affect on sensor performance (field of view and maximum detection range) are optimized as the design factors. From the optimization results in simulation, we show that optimal design factors according to various purposes required in ADAS could be easily determined and the sensor performances could be evaluated before manufacturing. It will reduce temporal and economic burdens for design and manufacturing in development process.  相似文献   
945.
Altitude has a significant effect on combustion of heavy-duty diesel engines, especially during cold start. An experimental study on a heavy-duty diesel engine operating at different altitudes was conducted. Tests were based on a direct injection (DI) turbocharged diesel engine with intake and exhaust pressure controlled by the plateau simulation test system to stimulate altitude conditions including 0 m, 1000 m, 2000 m, 3000 m and 4000 m. Results indicated that the compression and expansion resistance moment reduced and the speed increased during the cranking period. The peak pressure of several cycles was increased during the start-up period; however, the expansion pressure dropped more and the indicated mean effective pressure (IMEP) reduced as the altitude rose. While at an altitude of over 2000 m, the peak pressure fluctuated obviously during the start-up period. The higher the altitude was, the more the fluctuation amplitude and cycle number increased and combustion instability enhanced, which resulted the start-up period time increasing at high altitude. When the altitude rose, the cycle-to-cycle variation of the peak pressure and speed fluctuation increased during the idle, the ignition and CA50 were delayed and the combustion duration was shortened. The effect of altitude on combustion characteristics of the diesel engine was more significant during the start-up period than during its idle period.  相似文献   
946.
This paper proposes a method to assist human force acting on electric bike without using costly torque sensors via a model-based impedance control technique. In general, electric bikes are classified into two categories, i.e., pedelec electric bikes and throttle electric bikes. We focus on the system called a pedelec electric bike. It assists human pedaling force using the pedaling information, e.g., pedaling force or speed. To obtain the human’s pedaling information in real-time, it needs physical sensors such as a torque sensor and a velocity sensor. But, these sensors are expensive and weak against external loads. Also, since these sensors are fixed directly to the forced component in a bike system, there are the risks of damage. For these reasons, sensor-less control methods based on a disturbance observer have been studied so far. In this paper, we have proposed a pedaling torque sensor-less power assist method and have applied it to the experimental pedelec electric bike. A power assist control algorithm, designed by employing an impedance model, consists of a PI-type feedback controller, an inverse model-based feedforward controller, and a pedaling torque observer. Finally, we performed experiments and confirmed the effectiveness of a proposed power assist control method.  相似文献   
947.
948.
Drowsy behavior is more likely to occur in sleep-deprived drivers. Individuals’ drowsy behavior detection technology should be developed to prevent drowsiness related crashes. Driving information such as acceleration, steering angle and velocity, and physiological signals of drivers such as electroencephalogram (EEG), and eye tracking are adopted in present drowsy behavior detection technologies. However, it is difficult to measure physiological signal, and eye tracking requires complex experiment equipment. As a result, driving information is adopted for drowsy driving detection. In order to achieve this purpose, driving experiment is performed for obtaining driving information through driving simulator. Moreover, this paper investigates effects of using different input parameter combinations, which is consisted of lateral acceleration, longitudinal acceleration, and steering angles with different time window sizes (i.e. 4 s, 10 s, 20 s, 30 s, 60 s), on drowsy driving detection using random forest algorithm. 20 s-size datasets using parameter combination of accelerations in lateral and longitudinal directions, compared to the other combination cases of driving information such as steering angles combined with lateral and longitudinal acceleration, steering angles only, longitudinal acceleration only, and lateral acceleration only, is considered the most effective information for drivers’ drowsy behavior detection. Moreover, comparing to ANN algorithm, RF algorithm performs better on processing complex input data for drowsy behavior detection. The results, which reveal high accuracy 84.8 % on drowsy driving behavior detection, can be applied on condition of operating real vehicles.  相似文献   
949.
The purpose of this study is to examine the effect of the steady airflow field of a rear spoiler on the coefficients of drag (CD) and downforce (CDF). The type of spoiler is suggested as a two-jointed arm model that mimics the flapping flight mechanism of the Canada goose. Computational fluid dynamics (CFD) technique was used for the steady airflow analysis of a vehicle implemented with various spoiler topologies. We evaluated CD and CDF due to the three types of airfoils and the five phases of each airfoil. We obtained the following conclusions from the results: (1) We found that the best cases for CD and CDF were the case of Phase 5 and symmetry airfoil, and the case of Phase 1 and reverse airfoil, respectively. (2) It is clear that CD becomes the largest at Phase 1 of the reverse airfoil, since the eddy magnitude at the rear of the vehicle is the largest, and CDF also becomes the largest during that phase, since the pressure distribution on the upper surface of the spoiler is very large. (3) As Phase 1 moves to Phase 5 in the same type of airfoil, it is advantageous for CD and disadvantageous for CDF, respectively.  相似文献   
950.
The paper presents an alternative model developed in order to determine the pedestrian throw distance, taking into account ten distinct parameters. The collision dynamics, after the primary and secondary impact (pedestrian’s head hitting the vehicle windshield-hood area) between the vehicle and the pedestrian, entails the pedestrian ‘carrying’ phase onto the vehicle hood-windshield. Other parameters influencing the pedestrian throw distance, such as road inclination, friction coefficient between the pedestrian and the ground, vehicle and pedestrian mass, pedestrian launch angle are considered for the analysis. A comparison between the results obtained through the formula proposed in this paper and the results obtained by other researchers as well as a comparison with the results extracted from the casuistry analyzed by the authors on both accident reconstruction and laboratory tests is carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号