首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2973篇
  免费   229篇
公路运输   827篇
综合类   971篇
水路运输   635篇
铁路运输   614篇
综合运输   155篇
  2024年   19篇
  2023年   34篇
  2022年   131篇
  2021年   168篇
  2020年   102篇
  2019年   60篇
  2018年   56篇
  2017年   65篇
  2016年   60篇
  2015年   135篇
  2014年   167篇
  2013年   170篇
  2012年   259篇
  2011年   245篇
  2010年   270篇
  2009年   238篇
  2008年   211篇
  2007年   233篇
  2006年   185篇
  2005年   173篇
  2004年   68篇
  2003年   40篇
  2002年   14篇
  2001年   41篇
  2000年   44篇
  1999年   11篇
  1996年   2篇
  1995年   1篇
排序方式: 共有3202条查询结果,搜索用时 15 毫秒
991.
针对基本通行能力不能全面反映道路交通状况的缺点, 提出了城市道路随机化通行能力概念; 依据评价体系定义交通中断与持续中断, 量化了城市道路交通拥堵程度; 研究了现有通行能力估计方法, 利用乘积限与寿命分布列构造并估计了交通流分布函数; 结合交叉口各入口交通流数据特性改进传统连续交通流参数模型, 提出了基于交通流生存函数的交叉口通行能力计算模型; 将该模型估计结果与道路通行能力手册HCM2010中的模型估计结果和交叉口实测流量进行误差对比。分析结果表明: 生存函数模型计算出的中断、持续中断交叉口通行能力与HCM2010中的模型计算结果误差均值分别为0.162 1与0.116 4, 方差分别为0.029 0与0.015 2, 两者误差波动均较小; 提出的计算模型结果与实测较大流量相对误差分别为9.720%、3.822%和4.936%、4.779%, 统计意义下提出的计算模型相对误差为5.871%, 估计效果稳健; 城市道路交通中断次数、可接受中断概率、交通流、速度与道路通行能力之间存在生存函数乘积限对应关系, 研究交叉口的通行能力为7 632 pcu·h-1, 提出的计算模型估计结果更具有可靠性。可见, 提出的计算模型适用性较好, 特别在不同拥堵程度的城市道路交通区域, 通过可接受中断概率估计通行能力, 可为城市道路交通组织与管理部门提供优化目标、科学决策和易于接受的理论依据。  相似文献   
992.
为了提高距离高度显示器模式激光雷达的尾涡探测与反演精度,提出了基于涡核区域分割的机场激光雷达最佳选址求解算法,研究了激光雷达横向和纵向安装位置对尾涡反演精度的影响;考虑尾涡消散和下沉影响,建立了激光雷达动态回波数据仿真模型;推导了尾涡区域分割径向距离公式,根据区域分割后的速度极值点确定了尾涡涡核位置;对涡核位置进行探测时间差修正后代入诱导速度方程,利用涡核附近的特征点径向速度构建了联立方程组,求解了尾涡环量相对误差;结合机场的机型占比数据,设计了激光雷达最佳选址的计算流程;基于国内某机场一周的运行数据,提取了5种典型机型数据进行机场激光雷达选址影响分析,确定了该机场的最佳激光雷达布局位置。研究结果表明:激光雷达选址的横向距离对反演精度影响较大,且存在最佳横向距离,大约为飞机翼展的10倍;最佳横向距离附近大约200 m是较佳的选择范围,该范围内探测精度变化不大;纵向距离选择存在最小值,最小值与尾涡下沉速度成正相关,对于典型民航大型飞机,大约为800 m;当纵向距离大于最小值时,其变化基本不影响尾涡探测精度;机场激光雷达的最佳选址区域为横向位置在最佳横向距离附近、纵向距离大于最小值的长条形区域。可见,机场激光雷达最佳选址求解算法是有效的,可以应用于尾涡探测试验或动态尾流间隔系统的激光雷达选址决策分析。  相似文献   
993.
分析了飞机遭遇尾涡后的响应机理,综合考虑飞机滚转阻尼特性及操纵品质等因素,建立了飞机滚转角加速度计算模型;因飞机遭遇尾涡后飞行轨迹及飞行姿态发生改变,选择了多个扰动参数评估尾涡遭遇安全性,建立了飞机动力学参数计算模型;为确定尾涡遭遇可接受安全水平,基于国内现行尾流间隔标准,统计了中低空典型机型组合的尾流遭遇受扰参数计算数据;分析了高空尾涡流场演化特性,计算了高空巡航状态下的尾流安全间隔,分析了不同因素对飞行安全的影响。研究结果表明:与中低空相比,高空尾涡流场的初始强度大,持续距离长,飞行高度超过9 000 m后,尾涡消散随高度的增大而加快;当前机为超级重型机、重型机,现行尾流间隔无法保证飞行安全,需增加安全间隔1.4~2.1 km,飞行高度分别超过13 800、14 400 m后,尾涡遭遇严重度降低;当前机为一般重型机时,尾流安全间隔可缩减1.5 km以提高空域利用效率;当前机为中型机时,尾涡遭遇安全性较高,但此时受最小雷达间隔限制,无法进一步缩减前后机间距;后机的飞行速度越低,发生尾涡遭遇的严重程度越高;在后机初始滚转坡度角由0增加到10°的过程中,尾涡安全间隔增加1.3 km,增加幅度约为8.61%。可见,采用多个受扰参数能有效评估高空尾涡遭遇严重程度。  相似文献   
994.
基于双闭环的电控柴油机EGR系统控制研究   总被引:2,自引:0,他引:2  
针对电控柴油机EGR系统的功能和作用,对EGR系统控制进行了比较深入的分析和研究,设计了EGR系统使能、EGR进气需求量的计算、EGR进气控制、EGR阀位置控制等关键的控制逻辑算法。通过MAT-LAB/Simulink软件平台编写了EGR控制的策略框图并进行了离线仿真,并在硬件试验台架上进行了验证。结果表明,控制效果达到了预期的要求,实现了电控柴油机的EGR控制。  相似文献   
995.
为分析地铁安检系统性能、提高安检服务效率,在分析地铁安检服务流程结构特征的基础上,利用广义随机Petri网(GSPN)建立地铁安检服务流程模型.构造GSPN模型同构的嵌入马尔可夫链(EMC),进而对地铁安检服务流程性能进行深入分析.以地铁10号线国贸站为例进行性能分析,结果表明:新建立模型既能整体分析整个地铁安检服务流程的性能,又能有效识别流程中的瓶颈环节,为安检系统的针对性优化提供理论基础.  相似文献   
996.
完整的交通路网数据是实现智能交通系统的前提,故本文提出一种基于图自编码-生成对 抗网络的方法对路网中缺失数据进行修复。首先,通过降噪图变分自编码器提取路网缺失数据 的时空特征,使其能最大程度捕获原始路网信息;其次,基于该时空特征利用生成对抗网络生成 路网数据,加入重建损失并优化生成对抗网络的目标函数,实现对缺失数据的有效插补;最后,采 用西雅图(Seattle)和加州(PEMS04)路网速度数据集,针对不同缺失类型和缺失率下的数据修复进 行对比实验。当随机缺失率在 10% ~70%时,Seattle 数据集的 MAE 指标在 2.38~3.25 之间, PEMS04 数据集的 MAE 指标在 1.46~2.38 之间;当聚集缺失率在 10%~70%时,Seattle 数据集的 MAE指标在2.51~2.82之间,PEMS04数据集的MAE指标在1.52~1.54之间。对比结果表明,本文 提出的路网数据修复方法均优于BP、DSAE、BGCP等模型。  相似文献   
997.
魏镜辉 《交通与运输》2021,34(z1):93-94,101
从学童出行路径的连续性、安全性、舒适性和趣味性方面出发,针对现状道路进行改造,打造具有特色的安全上下学路径.以深圳市坪山区学童通道试点工程为例,通过对现有道路微改造,打造出一条连续、安全、舒适和有趣的彩虹学道,改善学童的出行环境,保证学童安全上下学.  相似文献   
998.
  目的  为了解决无人船通信数据量大、传输时延高等问题,提出一种适用于无人船的软件定义网络(SDN)架构下多约束无人船网络传输路由算法(USMCRA)。  方法  通过建立SDN架构的无人船网络模型,将网络中路由选择问题转化为多约束最短路径问题,利用该算法选择合适的路由节点完成数据的传输。算法通过SDN控制器获取网络链路中的状态信息,将带宽、时延以及数据流大小作为约束条件结合Dijkstra算法设计实现。在仿真实验中通过mininet仿真平台构建无人船网络拓扑结构,在RYU控制器中添加USMCRA算法,实现网络的仿真。  结果  结果表明,该路由算法提高了无人船网络传输的效率以及传输的稳定性。相比于传统的网络架构,添加USMCRA算法的网络传输速率提高了16%左右,网络抖动的峰值控制在0.2 ms左右,实现了网络的优化。  结论  所提出的USMCRA算法为解决无人船通信数据量大、传输时延高等问题提供了一种新的解决思路。  相似文献   
999.
根椐高等级公路勘测的要求,研究基于GPS—RTK技术的公路定测方法和应注意的技术问题,改革传统的公路勘测设计模式,提高了公路勘测设计工作的效率和数字化水平。  相似文献   
1000.
王娟  魏金芳 《世界海运》2005,28(6):33-34
为了适应国际航运市场日趋激烈的竞争需要,各个航运企业都把大力发展航运物流、整合物流市场作为发展策略.针对航运物流市场整合的策略进行分析,提出整合的基本思路,同时列举了具体的整合方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号