首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2713篇
  免费   15篇
公路运输   536篇
综合类   687篇
水路运输   880篇
铁路运输   25篇
综合运输   600篇
  2022年   11篇
  2021年   9篇
  2020年   10篇
  2019年   7篇
  2018年   357篇
  2017年   311篇
  2016年   287篇
  2015年   14篇
  2014年   48篇
  2013年   136篇
  2012年   107篇
  2011年   260篇
  2010年   264篇
  2009年   91篇
  2008年   228篇
  2007年   141篇
  2006年   20篇
  2005年   78篇
  2004年   53篇
  2003年   65篇
  2002年   29篇
  2001年   17篇
  2000年   7篇
  1999年   14篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1995年   12篇
  1994年   9篇
  1993年   11篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   10篇
  1980年   6篇
  1979年   9篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   5篇
  1973年   2篇
  1972年   4篇
排序方式: 共有2728条查询结果,搜索用时 15 毫秒
911.
The excitation force of a powertrain is one of major sources of interior noise in a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the powertrain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using experiments for the reduction of vibration and noise. In order to solve this problem, the vibration of the powertrain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts of the vehicle is investigated by using experiments based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a powertrain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the powertrain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.  相似文献   
912.
In order to develop a fatigue design method for actual railroad car and commercial vehicle body structures using the fatigue data of simulated single spot-welded lap joints, we first analyzed the stress distribution and evaluated fatigue strength of spot-welded T-type members that are the components of actual railroad car and commercial vehicle body structures. Next, fatigue design approach of these members using the fatigue data of single spot-welded lap joints was investigated. From our results, we found that, even though there was a quantitative difference of fatigue strength between the single spot-welded joint and the actual members over the same number of fatigue cycles, through the use of appropriate correction, the fatigue design criterion of actual spot-welded members, such as those used in railroad car and commercial vehicle body, can be predicted using the fatigue strength of single spot-welded joint.  相似文献   
913.
Because the characteristics of rubber bushing significantly affect the accuracy of vehicle dynamics simulations, they should be accurately modeled in the vehicle suspension model. In this paper, a new nonlinear bushing model for automotive bushing components is developed to improve the accuracy of vehicle dynamics analysis. Bushing components were first tested to capture the nonlinear and hysteretic behavior of typical elements by using a MTS 3-axis elastomer tester. A simple Bouc-Wen hysteretic differential model was modified to generate a more precise rubber bushing model. A sine wave, step input, and random excitations are imposed on the bushing. The ADAMS program is used to calculate sensitivity and the VisualDOC program is employed to find the optimal parameters for the bushing model. An error function is designed to find optimal parameters of the model. Parameter identification is carried out to satisfy the static and dynamic characteristics due to sine and step excitation inputs. It was proved that the proposed model could predict the bushing forces under sine, step, and random inputs well. The errors are within 10% in the overall range. To show the validity of the proposed model, a numerical example was also carried out. Because the bushing forces due to random excitation input show good agreement with experiments, the proposed bushing model is available in the vehicle dynamics simulation.  相似文献   
914.
The ESC system, since its introduction in the mid 90s, has greatly contributed to prevention of vehicle accidents with its capability of maintaining vehicle stability in severe driving conditions. Due to its significant advantages, many nations are now adopting regulations that mandate installation of the ESC system in all classes of passenger vehicles — from mini to luxury. Accordingly it became important to know whether an ESC ECU can yield good performance on a wide range of vehicle parameter changes. In this paper, robustness analysis was conducted to study how characteristic variation of the main chassis components affect the performance of the ESC ECU. This analysis was carried out using a HILS system built on an actual ESC ECU. The variation range of each chassis component was carefully selected considering the component’s design criteria adopted in automotive industries. Based upon the robustness analysis results, the allowable variation ranges of the chassis components for ensuring sound performance of an ESC ECU were proposed.  相似文献   
915.
An autonomous braking system is designed using the prediction of the stopping distance. The stopping distance needs to be determined by considering several factors such as the desired deceleration and the speed of the hydraulic brake actuator. In particular, the actuator speed is very critical because it affects the shape of the deceleration response and it determines the accuracy of the predicted stopping distance. The autonomous braking control algorithm is designed based on the predicted stopping distance. The proposed autonomous braking system has been validated in autonomous vehicle tests and demonstrates that the subject vehicle can avoid the collision effectively.  相似文献   
916.
A new approach to develop human driver models (HDMs) is proposed in accordance with the drivers’ generic human factors, i.e., gender, age, and experience, to develop more realistic vehicle simulations. The HDMs consist of three independent and stepwise models with functioning driver’s information processing stages based on the human factors: constructing drivers’ preview distance (PVD) models as a ‘cognition process’, implementing a finite preview optimal control algorithm as a ‘decision process’, and differentiating an ‘operation process’ according to neuromuscular efficiency. Eight different groups of 65 drivers with a 2 × 2 × 2 within-subject design participated in both the PVD estimates and neuromuscular efficiency tests to develop a set of statistically different HDMs. Regarding the preview distance models, an analysis of covariance (ANCOVA) procedure was adopted with two covariates (i.e., vehicle velocity and road curvature), while analyses of variance (ANOVAs) were performed on the neuromuscular efficiency parameters. The ANCOVA procedure produced eight significantly different cognition processes, whereas the ANOVAs revealed gender differences for the drivers’ neuromuscular systems. Moreover, an integrated vehicle simulation was configured with the HDMs using Carsim and Simulink software to observe the differential effects of both the cognition and operation processes on a double-lane-change (DLC) maneuver. During the simulations, gender differences in real-world DLC tests were also identified, especially between the male-oldexpert and the female-young-novice HDMs. The results presented in this study suggest that differentiating HDMs according to human factors is an essential process when utilizing vehicle simulations in the early stage of developing an intelligent vehicle system.  相似文献   
917.
Recently, biodiesel has emerged as an alternative fuel for achieving low-temperature combustion (LTC). Several articles in the literature have showed that oxygenated biofuels, including biodiesel, can improve combustion stability under high exhaust gas recirculation (EGR) operation, which is considered to be necessary for the removal of nitric oxides (NOx). The objective of this study was to investigate the performance and emissions of 20% biodiesel blended diesel fuel (B20) at various intake pressures and oxygen concentration levels to characterize the fuel for LTC application. The experimental investigation of B20 was carried out using a single-cylinder engine (SCE) at 1400 rpm and 50% load condition. A set of critical flow orifices with synthetic EGR was employed to simulate various intake pressures and EGR levels. The behavior of the B20 was first characterized under various intake conditions. The results showed that with high oxygen intake, B20 exhibited combustion and emission levels that were very similar to conventional diesel. However, B20 reduced combustion deterioration while exhibiting lower carbon monoxide (CO) and hydrocarbon (HC) emissions than diesel under low oxygen intake conditions.  相似文献   
918.
FTP75 driving cycle is used in many countries for evaluation of vehicle fuel economy. FTP75 has 3 phases, where the Phase 1 and the Phase 3 have a same velocity profile, but the Phase1, which is known as cold start phase, shows lower fuel efficiency than the Phase 3. In order to analyze the difference of fuel economy between Phase 1 and Phase 3, vehicle tests are performed. The test results show that the differences of fuel economy is ranging from 3.9% to 18.5%. The factors of the difference of fuel economy for gasoline automatic transmission vehicles are analyzed in this research. The key factors affecting the difference of fuel economy are engine friction loss, torque converter loss and accessory loss. The quantitative analysis of these factors is performed.  相似文献   
919.
This paper investigates mathematical modelling of response amplitude operator(RAO) or transfer function using the frequency-based analysis for uncoupled roll motion of a floating body under the influence of small amplitude regular waves. The hydrodynamic coefficients are computed using strip theory formulation by integrating over the length of the floating body. Considering sinusoidal wave with frequency( ω) varying between 0.3 rad/s and 1.2 rad/s acts on beam to the floating body for zero forward speed, analytical expressions of RAO in frequency domain is obtained. Using the normalization procedure and frequency based analysis, group based classifications are obtained and accordingly governing equations are formulated for each case. After applying the fourth order Runge-Kutta method numerical solutions are obtained and relative importance of the hydrodynamic coefficients is analyzed. To illustrate the roll amplitude effects numerical experiments have been carried out for a Panamax container ship under the action of sinusoidal wave with a fixed wave height. The effect of viscous damping on RAO is evaluated and the model is validated using convergence, consistency and stability analysis. This modelling approach could be useful to model floating body dynamics for higher degrees of freedom and to validate the result.  相似文献   
920.
In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp0.6, are assumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号